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PACKAGE SPECIFICATION HSL ARCHIVE

1 SUMMARY

HSL DC05 is a suite of Fortran 95 procedures for the solution of a system of ordinary differential equations (ODE) or
differential algebraic equations (DAE) of index 1:

F(t,Y,Y′) = 0, (1.1)

where Y′ = dY/dt. It provides a powerful optional method of avoiding the incorrect occurrence of negative values for
solution components that should remain positive throughout. Some of the components of F and Y are purely algebraic;
the algebraic equations do not involve Y′ and the rest do not involve the derivatives of the algebraic components of Y.
If there are Nalg such algebraic equations and variables, we can split Y into two vectors: Y1 of length Nalg and Y2 of
length (Neq−Nalg), where Neq is the total number of equations (algebraic and differential). In turn, equation (1.1) can
be written as:

F1(t,Y1,Y2) = 0, (1.2)
F2(t,Y1,Y2,Y′2) = 0, (1.3)

where F1 and F2 are vectors of length Nalg and (Neq−Nalg), respectively. Components Y1 of Y are purely algebraic,
their derivatives Y′1 being absent. The system must be of index no higher than 1, i.e. it must be non-singular in the
sense that equation (1.2) can in principle be solved for Y1 and equation (1.3) for Y′2. HSL DC05 cannot solve DAE
systems of index greater than 1, which present added difficulties not present in those of index 1. The extension to the
case where the algebraic components are not ordered before differential ones is explained in Section 2.11.

A special case, which often occurs in practice, is when equation (1.3) can be inverted to find a solution for the
derivatives and the equations (1.2) and (1.3) take the explicit form:

G1(t,Y1,Y2) = 0, (1.4)
G2(t,Y1,Y2)−Y′2 = 0. (1.5)

Another special (and common) case occurs when there are no algebraic variables, Nalg = 0. In this case, we have
an Implicit Ordinary Differential Equation (IDE) system:

F2(t,Y2,Y′2) = 0. (1.6)

Equations of this type are classified as DAE problems of index 0. Equation (1.6) will often in practice take the simple
explicit form:

G2(t,Y2)−Y′2 = 0. (1.7)

1.1 Information needed to integrate the equations

The solution starts from given initial values of Y2 at t = T , using a variable order Backward Differentiation Formula
(BDF) method, also known as Gear’s method, Gear (1971), of order 1 to 5. The method automatically chooses step-
size (h) and order of integration formulae (k), and is especially efficient on stiff systems in particular those arising
from mass action kinetics. HSL DC05 has been designed to handle DAE problems, which can be regarded in some
sense as limiting cases of ODE problems of infinite stiffness. The methods used in HSL DC05 are not too inefficient
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to be acceptable on many non-stiff problems. Function evaluation and linear algebra are carried out in the calling
program by using ‘reverse communication’.

Within each integration step, the variables Y are represented as polynomials in t of degree k, k = 1 to 5. The
algorithm for taking a step (of length h from t = xr−1 to t = xr = xr−1 +h) updates these polynomials, making use of
equations (1.2) and (1.3) by satisfying them at the end of the new step. As these equations are in general nonlinear, this
requires iteration. Newton iterations are used; the calling program will therefore need to form the Newton Iteration
matrix W:

W =

 J11 αJ12

J21 αJ22 +βK/h

 , (1.8)

where the Jacobian matrices are given by:

Ji j =
∂Fi

∂Y j
and K =

∂F2

∂Y′2
(1.9)

and α, β and h are scalars returned by HSL DC05 to the calling program. The scalar α is equal to 1 normally, but is set
to zero during iterations on start-up to correct the initial guess for Y1. The scalar β is always of order unity, while h
is the current integration step-length and may vary through many orders of magnitude. The calling program therefore
needs to supply the Jacobians. The matrix W is used in Newton iterations, solving the correction equations:

WδC+F = 0 (1.10)

for a correction vector δC that is returned to HSL DC05. The calling program must evaluate F, but only δC is passed to
HSL DC05. Note that for an explicit DAE system or for a simple explicit ODE system, the function F is equivalent to
G(t,Y)−Y′. The linear algebra method used to solve equation (1.10) can be chosen to reflect the structure of W.

There is a facility for restarting after a difficulty. All stored information about Y is discarded except for the current
value of Y2 and estimates of Y1 and Y′2.

HSL DC05 also contains subsidiary algorithms for:

1. testing the convergence of these iterations;

2. testing the accuracy of a converged step;

3. changing step-size h and/or order k, to improve the rate of progress while maintaining accuracy;

4. calculating output values of Y and Y′ within a completed step; and

5. obtaining or correcting starting values of Y1 and Y′2.

The last is, of course, necessary only on first starting (or on restarting after a discontinuity). The user’s initial guesses
of these quantities are unlikely to satisfy equations (1.2) and (1.3) to sufficient accuracy to avoid injecting an unwanted
initial transient into the solution, with possible persistent failure to pass the built in accuracy tests on the first few steps.

1.2 Problem Suitability

The package is designed to handle DAE problems, which can be regarded in some sense as limiting cases of ODE
problems of infinite stiffness. This means that it can also handle very efficiently stiff ODE problems. Stiffness is an
operational concept indicating a particular class of problems. There are many problems in physics and, especially,
in chemistry (for example, mass action kinetics) which exhibit stiffness. The solution develops in time in a perfectly
stable way, in the sense that solutions starting from slightly different initial conditions do not diverge from each other,
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but rather tend to coalesce as time increases (it is characteristic of these problems that there is no inherent upper limit
to the time for which they may develop, unless the process is artificially interrupted). Any small perturbation tends
to die out with increasing time. In many such problems, the rate at which perturbations decay varies very greatly
from one type of perturbation to another and although the system being modeled is highly stable, many numerical
calculation methods which may be used to model it may be unstable unless very small integration step sizes are used.
The integration can therefore become computationally very expensive unless a method specifically designed for use
with stiff problems is used.

HSL DC05 is highly suitable for stiff ODE problems, for example those arising from mass action kinetics, either
alone or, using the Method of Lines, with conservatively discretized diffusion and/or transport by known solvent
advection. HSL DC05 is quite unsuitable for the Method of Lines solution of problems of laminar or turbulent fluid
flow, or for calculation of orbits under gravitation, or (especially) for modeling feedback control systems in order
to detect possible instabilities arising from feedback becoming positive. In fact, relatively few available numerical
methods are suitable for this last class of problem, unless they have been carefully designed for the purpose.

1.3 Numerical precision

Solution of DAE or stiff ODE problems is numerically demanding. Use of at least 8-byte arithmetic is recommended.

ATTRIBUTES — Version: 1.1.1. Types: Real (single, double). Precision: At least 8-byte arithmetic is recom-
mended. Date: July 2004. Origin: A.R. Curtis, ARC Scientific, L.C. Daniels, Hyprotech UK Ltd., and J.K. Reid,
Rutherford Appleton Laboratory. Calls: GEFA, GESL. Language: Fortran 95.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

Access to the package requires a USE statement.

Single precision version
USE HSL DC05 SINGLE

Double precision version
USE HSL DC05 DOUBLE

In HSL DC05 SINGLE, all reals are default reals. In HSL DC05 DOUBLE, all reals are double precision reals. In both
modules, all integers are default integers.
There are three principal subroutines for user calls:

1. The subroutine DC05 INITIALIZE must be called to initialize the data structure used by HSL DC05. The call
to DC05 INITIALIZE is also used to initialize certain components of the data structure that are used to con-
trol the integration. The subroutine must be called for each structure prior to calling DC05 INTEGRATE and
DC05 FINALIZE.

2. The subroutine DC05 INTEGRATE is the main routine of the package. It uses reverse communication with the
calling program. The actions required by the calling program are controlled by the state variable JOB. A template
of the calling sequence is in Section 2.4. The calling sequence is more complex than a simple CALL statement,
involving a sequence of operations to carry out the tasks requested by the program, followed by re-entry to
continue the solution.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL DC05 v1.1.1
Documentation date: February 8, 2011



HSL DC05 HSL ARCHIVE

3. The subroutine DC05 FINALIZE reallocates the pointer arrays in the data structure used by HSL DC05 to have
size zero. It should be called when the equations using these data structures have been solved unless the data
structures are about to be used again to solve a new problem for which the original call of DC05 INITIALIZE is
appropriate.

2.2 The derived data type

For each problem, the user is required to declare a structure type DC05 DATA TYPE.

For example:

USE HSL_DC05_DOUBLE ! or USE HSL_DC05_SINGLE
.....
TYPE(DC05_DATA_TYPE) :: DATA

2.3 Argument Lists

We use square brackets [ ] to indicate OPTIONAL arguments. We reserve the right to add additional OPTIONAL argu-
ments in further releases of the code.

2.3.1 The initialization subroutine

The initialization routine must be called for each structure used to hold the data for a problem.

CALL DC05_INITIALIZE(NEQ, NALG, DATA [,KMAX])

NEQ is a scalar INTEGER of INTENT(IN) specifying Neq, the total number of equations (algebraic and differential) to
be solved. Restriction: NEQ> 0.

NALG is a scalar INTEGER of INTENT(IN) that specifies the number of algebraic components (always the first Nalg
components) of Y,F. The special value −1 indicates a purely differential problem for which the Jacobian
matrix K is constant (as for example, in the simple explicit form of equation (1.7)). Otherwise, the value must
be non-negative and specifies Nalg directly. Restriction: NALG≥−1.

DATA is a structure of type DC05 DATA TYPE of INTENT(INOUT) that is used to hold the data for a problem. No com-
ponents need be set by the user. The subroutine allocates targets for pointer components and gives components
default values. If DC05 INITIALIZE has been previously called for DATA, all data associated with the previ-
ous problem are discarded. DATA%IERR is set to zero after a successful entry and to a nonzero value otherwise
(details in Section 2.12).

KMAX is an OPTIONAL, scalar INTEGER of INTENT(IN) that is used to specify the highest order of integration formulae
used by HSL DC05. For numerical stability, KMAX cannot be greater than 5. Its value should be normally be
set to 5, it should be least 1, and for efficiency preferably at least 3. If KMAX is absent, the value of 5 is used.
Restriction: 1≤ KMAX ≤ 5.
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2.3.2 Integration of equations

The equations are integrated by DC05 INTEGRATE:

CALL DC05_INTEGRATE(JOB, ITER, DATA)

where:

JOB is a scalar INTEGER of INTENT(INOUT) that must be set to 0 on first entry. On return, it specifies what the code
did and what it now requires; it then has one of the following values:

JOB < 0, error return (see Section 2.6).

JOB=1, the code requires evaluation of new Jacobian matrices J and K at the trial point t = DATA%T, Y =
DATA%Y, Y′ = DATA%YDER (either at the start of an integration step, or because convergence with the old
matrix has been unsuccessful). See Section 2.7.1. The evaluation of the new Jacobian matrices J and K
must always be followed by a Newton matrix evaluation, decomposition (factorization) and then function
evaluation and solution of equation (1.10) i.e. as for JOB= 2.

JOB=2, the code requires evaluation and factorization of a new Newton iteration matrix W using the current J,K
(because the step size or order has changed, or J,K have been updated). See Section 2.7.2. The evaluation
and factorization of a new Newton iteration matrix W must always followed by function evaluation and
solution of equation (1.10) i.e. as for JOB= 3.

JOB=3, the code requires evaluation of the functions F at the trial point t = DATA%T, Y = DATA%Y, Y′ =
DATA%YDER. See Section 2.7.3. Then the Newton equations (1.10) must be solved, and the correction
vector δC returned in DATA%DELTAC. See Section 2.7.3. The solution of the Newton equations (1.10) must
always be followed by recall of DC05 INTEGRATE.

JOB=4, an integration step was successfully completed and output values at the end of the step are returned
in DATA%T, DATA%Y, and DATA%YDER. Interpolated output at intermediate points within the step can be
obtained by changing DATA%T, setting DATA%ISTART=2, and re-entering. DC05 INTEGRATE will then return
with JOB=5 (see below and Section 2.7.4). Otherwise, recall DC05 INTEGRATE to take a new step or branch
to further code if the end of the integration range has been reached.

JOB=5, interpolated output at an intermediate point in the step has been returned. DATA%Y and DATA%YDER will
correspond to DATA%T, and DATA%ISTART will have been reset to 1. More interpolated output may be ob-
tained by changing DATA%T, setting DATA%ISTART=2, and re-entering. Otherwise, recall DC05 INTEGRATE
to take a new step or branch to further code if the end of the integration range has been reached.

JOB must not be set by the user except on an initial entry.

ITER is an INTEGER scalar of INTENT(INOUT) that must not be set by the user. It is used by the code to indicate what
type of iteration is required. Its normal return value is 0. If DC05 INTEGRATE returns with ITER equal to 1, a
special iteration is required to determine a consistent set of initial values at the start of a DAE problem and the
calling code must supply a modified version of the Newton matrix, see Sections 2.7.2 and 2.7.3.

DATA is a structure of type DC05 DATA TYPE of INTENT(INOUT). It will have been initialized by DC05 INITIALIZE
and is used to hold the data for the problem to be solved. The components of DATA are described in Section
2.3.4. The parts of DATA that must be set before the first JOB = 0 call to DC05 INTEGRATE are described in
Section 2.5.2. Actions on subsequent calls to DC05 INTEGRATE are described in Section 2.6. DATA%IERR is set
to zero after a successful entry and to a nonzero value otherwise (details in Section 2.12).
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2.3.3 The finalization subroutine

CALL DC05_FINALIZE(DATA)

where:

DATA is a structure of type DC05 DATA TYPE which will have been initialized by DC05 INITIALIZE and used to hold
the data for a problem. On exit from DC05 FINALIZE, its pointer array components will have been reallocated
to have zero length. Without such finalization, the storage occupied is unavailable for other purposes. In
particular, this is very wasteful and causes ‘memory leaks’ if DATA goes out of scope on return from a procedure.
DATA%IERR is set to zero after a successful entry and to a nonzero value otherwise (details in Section 2.12).

2.3.4 The components of the structure DATA used by DC05 INTEGRATE

The structure DATA is of type DC05 DATA TYPE and is used to hold the data for a particular problem. DATA contains a
number of POINTER arrays that are treated as if they were allocated arrays and are allocated to the correct dimensions by
DC05 INTIALIZE. It also contains pointer scalars that are associated with elements of these arrays by DC05 INTIALIZE.
For simplicity, we do not document which are pointers. The components listed below are employed in tasks that require
interaction with the calling program.

DATA%ALFA,DATA%BETA are REAL scalars, not set on first entry, whose values are output by DC05 INTEGRATE to pro-
vide α and β in equation (1.8). Their values must not be changed by the calling program.

DATA%DELTAC is a REAL rank-one array of length NEQ. The elements of DATA%DELTAC need be set only when JOB= 1,2
or 3. Once the Newton equations (1.10) have been solved the user must return in DATA%DELTAC the correction
vector δC, which is given by the solution of the Newton equations (1.10). On return, DATA%DELTAC holds no
significant information.

DATA%HH is a REAL scalar, not set on first entry, whose value is output by DC05 INTEGRATE to provide h of equation
(1.8). This is the length of the last completed integration step to DATA%T. Its value must not be changed by the
calling program.

DATA%HMAX is a REAL scalar. On the first call (JOB= 0) this must be set to the initial trial value of the step-size h (which
DC05 INTEGRATE will not exceed), as a guide to the scale of the independent variable t. A reasonable value might
be DATA%TOL times the distance to the point at which the user wants output, but even smaller values may give
better results as DC05 INTEGRATE can increase its step-size very rapidly, if accuracy tests allow, at the start of a
run. On subsequent calls, if the user wishes to limit the step-size to prevent the code from stepping over ‘narrow
features’ in the functions F without ‘seeing’ them then the user must set DATA%IHMAX = 1 and DATA%HMAX to
the limit. On most problems, this is not necessary. When a restart has been requested (DATA%ISTART= 0) then
DATA%IHMAX must be set to 0 and DATA%HMAX reset.

DATA%IACC is an INTEGER scalar. It allows the user to override the default accuracy and convergence testing. The
default accuracy testing has proved very reliable over a wide range of problems. It has built in refinements to
deal with cases where a component of Y has an initial value of zero or passes through zero during integration.
If the user wishes to override the default accuracy and convergence testing set DATA%IACC = 2, see Section 2.10.

DATA%IERR is an INTEGER scalar that is set by each of the subroutines. The value zero indicates that the subroutine
has performed successfully. For nonzero values, see Section 2.12.

DATA%IHMAX is an INTEGER scalar. It is initialized to 0 by DC05 INITIALIZE and must be left unchanged unless the
user wishes to limit the step-size to DATA%HMAX, in which case the user must set DATA%IHMAX= 1 and DATA%HMAX
to the limit. When a restart has been requested then DATA%IHMAX must be reset to 0.
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DATA%ISTART is an INTEGER scalar used to control the action of DC05 INTEGRATE:

DATA%ISTART = 0 for a start or restart,

DATA%ISTART = 1 for continuation of normal integration, and

DATA%ISTART = 2 for additional output within a completed step.

DC05 INITIALIZE sets its value to 0 and this must not be altered before calling DC05 INTEGRATE with JOB= 0.
On all normal returns, JOB> 0, it will have been set to 1. For normal continuation, the user must not change its
value. To request additional output when JOB = 4 or 5, the user must change its value to 2; on return, its value
will have been reset to 1. To request a restart, the user must change its value to 0. After an error return, JOB< 0,
it will have been given a negative value.

DATA%ITSTOP is an INTEGER scalar that is given a default value of 0 by DC05 INITIALIZE. For efficiency, the code
takes steps as large as possible and uses an interpolation routine to give results within the last completed step.
Thus it will normally integrate past the end of the range. If it is not possible to integrate beyond a value tstop
(because of an essential singularity there, such as a failure of definition of the functions F beyond that point),
DATA%ITSTOP must be given the value 1 and DATA%TSTOP must be given the value tstop. If there is no such limit
DATA%ITSTOP must have the value 0.

DATA%TSTOP is a REAL scalar. If DATA%ITSTOP= 1, DATA%TSTOP must be set to the value of tstop.

DATA%IYLOG is an INTEGER rank-one array of length NEQ that controls the status of component Y(I) for I= 1 to NEQ
of the solution vector Y with respect to logarithmic transformation. Input values on an initial JOB= 0 call may
be −1 (never transform), 0 (transform to avoid negativity) or 1 (transform as soon as Y(I) > 0). The default
for each component is −1 and this is set by DC05 INITIALIZE. On return from DC05 INTEGRATE, components
of Y which have been transformed by DC05 INTEGRATE will be indicated by the corresponding elements of
DATA%IYLOG having been incremented by 2 from their initial values, and these must not be altered; if JOB= 4 or
after a restart (DATA%ISTART= 0), components that have not been incremented by 2 i.e for any DATA%IYLOG< 2
may be altered to a value −1, 0 or 1 as required.

DATA%KNTERR is an INTEGER scalar that specifies the maximum number of diagnostic print-outs on unit DATA%OUTPUT1.
It has a default value of 10 set by DC05 INITIALIZE. If the value is not positive, there will be no diagnostic
printing.

DATA%KOUNT is an INTEGER rank-one array of size 5 that is used to hold a number of different statistics on the various
operations carried out by DC05 INTEGRATE since the previous JOB= 0 call.

DATA%KOUNT(1) holds the number of completed steps.

DATA%KOUNT(2) holds the number of attempted steps.

DATA%KOUNT(3) holds the number of function evaluations, which is equal to the number of solutions of the
Newton equations.

DATA%KOUNT(4) holds the number of Jacobian evaluations.

DATA%KOUNT(5) holds the number of times the Newton matrix was formed and decomposed.

DATA%MAXNOSTEPS is an INTEGER scalar that specifies the maximum number of steps to be taken by DC05 INTEGRATE.
Its default value is 500, set by DC05 INITIALIZE.

DATA%OUTPUT is an INTEGER scalar that specifies the unit for printing any warning messages. If negative , the printing
of warnings is suppressed. Its default value is 6, set by DC05 INITIALIZE.

DATA%OUTPUT1 is an INTEGER scalar that specifies the unit for printing diagnostic messages. If negative, the printing
of diagnostics is suppressed. Its default value is −1, set by DC05 INITIALIZE.
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DATA%T is a REAL scalar holding the value of the independent variable t. The initial value must be supplied on first
entry JOB = 0. DC05 INTEGRATE alters the value of t. The solution will have reached this point if JOB = 4, or
JOB= 5. The value of DATA%T must not be changed except prior to a JOB= 0 or JOB= 5 entry.

DATA%TOL is a REAL scalar representing the relative accuracy required in the solution. DATA%TOL is used by the code
in a local accuracy test which requires that the estimate of the local error on Y(I) satisfies:

estimated local error≤ DATA%TOL*DATA%YTST(I).

On first entry (JOB= 0), the user must specify the accuracy required by setting DATA%TOL to a suitable positive
value.

DATA%TOL remains unchanged unless DC05 INTEGRATE returns with JOB = −2, indicating that DATA%TOL has
been reset to keep it within range, see Section 2.6.1. The value may be changed by the user between entries.

DATA%T0 is a REAL scalar. If JOB = 4 or 5, it holds the value of the independent variable t at the start of the last
completed integration step. For other values of JOB it does not hold any significant value. Its value must not be
changed by the calling program.

DATA%TT is a REAL scalar. If JOB = 4 or 5, it holds the value of the independent variable t at the end of the last
completed integration step, for other values of JOB it does not hold any significant value. Its value must not be
changed by the calling program.

DATA%WVEC is a REAL rank-one array of length NEQ. The elements of DATA%WVEC need not set on initial entry, JOB =
0. On return to the calling program for Jacobian evaluation, JOB = 1, it holds provisional increments δY =
DATA%WVEC and δY′ = DATA%WVEC/DATA%HH for Y and Y′ during numerical finite difference evaluation of the
Jacobians J and K. They may need to be increased by a large factor (e.g. 103 or more) to ensure numerical
significance of columns corresponding to zero or very small solution components.

DATA%Y is a REAL rank-one array of length NEQ. It contains the components of the solution vector Y at t = DATA%T.
Initial values of Y2 and estimates of Y1 must be supplied on first entry, JOB= 0. DC05 INTEGRATE returns output
values on completion of a step, JOB = 4, or interpolated output values at an intermediate point, JOB = 5 . On
return during a step, JOB < 4, it holds the value of Y. It must not be changed by the calling program, except
prior to a JOB= 0 entry.

DATA%YDER is a REAL rank-one array of length NEQ. It contains the components of Y′ = dY/dt at t = DATA%T. The
user must supply initial guesses on first entry, JOB = 0, if equations are implicit and non-linear in Y′, or zero
for components occurring linearly. On return with JOB= 4, DC05 INTEGRATE returns the output components of
Y′ at t = DATA%T. On return with JOB= 5, it gives the values of Y′ obtained by differentiating the interpolation
formulas used for DATA%Y. It must not be changed by the calling program.

DATA%YTST is a REAL rank-one array of length NEQ. It is used to hold an estimate of the largest absolute value of the
each solution component in an interval around the current value of t (DATA%T). The components of DATA%YTST
are used for comparison values against which accuracy estimates on the components of Y are assessed. By
default, the comparison values are initialized on a JOB= 0 entry , and then updated at the end of each integration
step in readiness for the next step. The user may (but is not advised to) set DATA%IACC = 2 and supply his or her
own comparison values in DATA%YTST. In this case DC05 INTEGRATE does not alter them.

2.4 Calling Template

The user must include code similar to the following in the calling program, inserting problem-dependent sections
where indicated, see Section 2.7

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSL DC05 v1.1.1
Documentation date: February 8, 2011



HSL ARCHIVE HSL DC05

! Access via USE statement and declare data structures
USE HSL_DC05_DOUBLE ! or USE HSL_DC05_SINGLE
TYPE(DC05_DATA_TYPE) :: DATA
INTEGER :: KMAX,NALG, NEQ
INTEGER :: JOB, ITER

! Insertion: set the values of NEQ, NALG and the optional argument KMAX (if required).
! Initialize the data structure (see Section 2.3.1)
CALL DC05_INITIALIZE(NEQ,NALG,DATA,KMAX)

! Insertion A: provide data, as described in Section 2.5.2
JOB = 0
DO

CALL DC05_INTEGRATE(JOB, ITER, DATA)

IF(JOB <= 0) THEN ! Negative value of job indicates error
! Insertion B: either handle error and cycle or exit - see Section 2.6.1

END IF

IF(JOB == 1) THEN ! New Jacobian matrices required
! Insertion C: compute J, K at t = DATA%T, Y = DATA%Y, Y’ = DATA%YDER,
! retaining them for later use, see Section 2.7.1.

END IF

IF(JOB <=2) THEN ! decomposition of new Newton matrix required
! Insertion D:

IF(ITER.GT.0)THEN ! Handle special iteration
! Replace rows NALG+1 to NEQ of W as described in Section 2.7.2

END IF
! Compute and factorize W, retaining for later re-use, see Section 2.7.2

END IF

IF(JOB <= 3) THEN ! function evaluation and Newton correction
! Insertion E: compute F at t = DATA%T, Y=DATA%Y, Y’=DATA%YDER,
! - see Section 2.7.3

IF(ITER.GT.0)THEN !Handle special iteration
! Replace elements NALG+1 to NEQ of F by those of YDER - see Section 2.7.3

ENDIF
! Compute DELTAC from equation (1.10) - see Section 2.7.3
CYCLE ! Call code again

ELSE IF (JOB >= 4) THEN ! step completed or intermediate output point found.
! Insertion F: process any end of step output required;

IF (further output needed) THEN
DATA%T = next output point in step (see Section 2.7.4)
DATA%ISTART = 2
CYCLE ! Call code again

ELSE IF (end of range reached) THEN
EXIT ! Finish integration

ELSE ! Set new output point
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CYCLE ! Call code again
END IF

END IF
END DO
CALL DC05_FINALIZE(DATA) ! Clean up data structures

An example using the above coding structure is given in Section 5.1.

2.5 Starting the calculation

In this section, we explain how to commence solving a new problem.

2.5.1 Inititialization of data structure

DC05 INITIALIZE (see Section 2.3.1) must be called to initialize the data structure.

2.5.2 Initialization of problem data (insertion A in calling template)

The following components of DATA (Section 2.3.4) must be set before DC05 INTEGRATE is called.
DATA%HMAX, DATA%ITSTOP, DATA%IACC, DATA%T, DATA%TOL, DATA%Y, DATA%YDER, and DATA%YTST. The other com-

ponents of DATA need not be set.

2.6 Action on error return from DC05 INTEGRATE

DC05 INTEGRATE returns to the calling program with JOB set to indicate what the calling program must do next.
Negative values indicate that an error condition has occurred.

2.6.1 Integration interrupted, but resumable — reported by negative values of JOB (insertion B in calling
template)

If the user wishes to inform the code that the integration should continue despite being interrupted, appropriate action
should be taken and DATA%ISTART reset. If DATA%ISTART is not reset, the integration will be terminated; no further
calls of DC05 INTEGRATE are permitted without another call of DC05 INITIALIZE.

JOB=-1, a large amount of work has been done (DATA%MAXNOSTEPS steps attempted). To enable the code to continue,
set DATA%ISTART=1, and call the code again. A further DATA%MAXNOSTEPS steps will be allowed.

JOB=-2, the tolerance on the accuracy DATA%TOL has been changed to bring it within range. The user may change
it but should be sure that the new value is suitable. To continue with the changed value, set DATA%ISTART to
1 and call the code again. To restart, set DATA%ISTART to 0, DATA%IHMAX to 0, reset DATA%HMAX, call the code
again. Note that if the user has used DATA%TOL to calculate a value for DATA%HMAX, the value will have to be
recomputed.

JOB=-3, not used.

JOB=-4, the user asked for interpolated output (DATA%ISTART=2) at a point outside the last completed step, i.e. before
DATA%T0 or after DATA%TT. The values of DATA%Y, DATA%YDER returned are those obtained from the interpo-
lation formula at the user’s value of DATA%T. DATA%ISTART=1 must be reset before calling DC05 INTEGRATE to
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continue integration. If instead further interpolated output is required, the user should set DATA%ISTART=2 and
change DATA%T to the required output point.

JOB=-5, the Newton iterations at the start of a DAE problem have failed to achieve F = 0 starting from the user
supplied initial values of Y,Y′. If the values of Y,Y′ returned are an improvement on the initial estimates,
further iterations may be successful. If this is required, the user should then set DATA%ISTART to 0, DATA%IHMAX
to 0, reset DATA%HMAX, and call the code again, which forces DC05 INTEGRATE to restart.

JOB=-6, DC05 INTEGRATE had repeated convergence test failures on the last attempted step. Inaccuracy of the Ja-
cobian matrix may be the cause of the convergence problems. The calculation may be continued, perhaps at
greatly reduced efficiency, by setting DATA%ISTART to 0, DATA%IHMAX to 0, resetting DATA%HMAX, and calling
the code again, which forces DC05 INTEGRATE to restart.

JOB=-7, DC05 INTEGRATE had repeated accuracy test failures on the last attempted step. There may be unrecognized
discontinuities in the equations, or the F functions may be providing noisy derivative values. The calculation
may be continued by setting DATA%ISTART to 0, DATA%IHMAX to 0, resetting DATA%HMAX, and calling the code
again, which forces DC05 INTEGRATE to restart.

JOB=-8,...,-32, are not used at present.

2.6.2 Integration terminated

JOB=-33, the code has met trouble from which it cannot recover. A message is printed on DATA%OUTPUT explaining
the cause of the trouble, and control is returned to the calling program. For example, invalid input data have
been detected. An attempt to continue will cause DC05 INTEGRATE to return immediately.

2.7 Main part the code (insertions C to F in the calling template)

Insertion A has been described in Section 2.5, and insertion B in Section 2.6.1. The remaining insertions are now de-
scribed, in the sections below. The code in these insertions should not change any quantity not specifically mentioned.

2.7.1 Jacobian calculation (insertion C in calling template)

Insertion C (JOB = 1) requires evaluation of the Jacobian matrices:

Ji j =
∂Fi

∂Y j
and K =

∂F2

∂Y′2
. (2.1)

If any special action (for example determining the sparsity pattern) is required on the first Jacobian evaluation, code
must be written to detect the first return with JOB=1 and take the necessary action. Storage must also be provided
for the Jacobian matrices J, K and for their sparsity pattern description. Evaluation by finite differences or automatic
differentiation is recommended, except perhaps for linear problems. The calling program is responsible for choos-
ing good increments for finite differences, although the suggested increments in DATA%WVEC may be found useful
(DATA%WVEC for the increments in Y and DATA%WVEC/h for the increments in Y′). The significance of the calculated
matrix columns should be checked, especially those relating to zero or small solution components, and if necessary
the corresponding component of DATA%WVEC should be increased and the column re-computed. Increases by a factor
of (say) 105 may be suitable. For simple problems of the form (1.7), K = −I, and so does not need be explicitly
evaluated and stored. If sparsity allows differencing for more than one column at a time, the user is responsible for
finding and implementing a suitable column grouping, for example by the use of the ‘CPR’algorithm (Curtis et al.,
1974) which is implemented in the HSL routine TD22. The values of J and K should be retained for later use, as well
as supplied immediately to the following insertion D.
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If the user has set NALG = −1 indicating that K is constant and that Nalg = 0, DC05 INTEGRATE will return with
JOB= 2 before the first return with JOB= 1. Therefore, care must be taken to ensure that J is initialized to zero and K
to its constant value before the first call to DC05 INTEGRATE to ensure that the initial iterations are carried out correctly.

2.7.2 Newton matrix generation and decomposition (insertion D in calling template)

Insertion D (1 ≤ JOB ≤ 2) requires the formation and decomposition (factorization) of the Newton iteration matrix
W, which is normally given by equation (1.8), but is:

W =

 J11 αJ12

0 I/h

 (2.2)

if ITER= 1. The values of h, α, β, needed to determine W will be found as the scalar variables DATA%HH, DATA%ALFA,
and DATA%BETA.

The precise nature of the process referred to as factorization or decomposition of W is up to the user. All that
DC05 INTEGRATE needs is that W is stored in some form which enables the user to solve equations (1.10) efficiently
for many successive values of F. The user is responsible for providing necessary storage for this form of W and for
any indexing information needed. As a practical point, it may be convenient to store and factorize −W rather than W,
since it is the equations (1.10) which have to be solved for δC.

If any special action (for example, analysis of the sparsity pattern to choose the pivotal sequence) is required on
the first decomposition of W, the user must write code to detect the first occasion and take the necessary action. Since
this occasion will follow on from the first return with JOB=1, detection can be shared with the insertion C above. If the
chosen decomposition routine chooses pivots for stability and sparseness, it may be advisable to replace by zero the
components of J12 and J22 of W for a trial factorization, and then force use of the same pivotal sequence thereafter, to
cope with the expected wide variation in h. This will in fact be automatic for a DAE system, since the first return with
JOB=1 will have α = 0. For a purely differential system, the first trial decomposition could well omit J22 and simply
use the K matrix. In either case, of course, the full pattern of logical nonzeros must be supplied to the decomposition
routine.

2.7.3 Function or correction calculation (insertion E in calling template)

Insertion E (1 ≤ JOB ≤ 3) defines the problem. If ITER= 0 the functions F must be evaluated at the current trial point
t = DATA%T, with Y and Y′ in DATA%Y and DATA%YDER. DATA%WVEC must not be altered. In practice, it is probably best
to call a subroutine to evaluate F, since the same code will be needed in computing the Jacobians (by finite differences
or automatic differentiation) when JOB=1.

In the case of a DAE problem, DC05 INTEGRATE uses a modified form of (1.10) to obtain initial values of Y′1. In
this case it returns with ITER= 1, to indicate that the components F2 must be replaced by those of Y′2 in DATA%YDER,
before solving equations (1.10). The function evaluation is followed by solution of the correction equation (1.10) to
obtain a correction vector δC, which must be placed in DATA%DELTAC. The coding needed to solve these equations
will, of course, depend on the chosen decomposition of W. If an approximate method of solution is chosen, it must be
accurate enough not to upset the convergence test in DC05 INTEGRATE, which is to an accuracy of 0.1*DATA%TOL,
relative to the components of DATA%YTST. It follows that δC should be found to considerably better accuracy than this.

2.7.4 End of integration step, output handling (insertion F in calling template)

If output is required only at the end of each integration step, it need only be processed when JOB=4. If however, output
is required at one or more intermediate points in the step just completed, from DATA%T0 to DATA%TT, set DATA%T to the
next value of t at which output is wanted, change DATA%ISTART to 2, and re-enter. DC05 INTEGRATE will interpolate
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the values of Y and Y′, returning them in arrays DATA%Y and DATA%YDER, with JOB=5 and DATA%ISTART reset to 1.
This may be done as often as required, so long as the requested values of DATA%T are within the step.

It is safe to test whether a point has been passed, and to iterate if necessary to find it, if an output point is determined
by the value of a function of t, Y and Y′, since the interpolated values in DATA%Y and DATA%YDER are continuous
functions of DATA%T.

It should be noted that DC05 INTEGRATE maintains an internal variable TIME which may differ from the external
DATA%T. The reason for this is to reduce the risk that when t is large the step size h may become so small that an
end-of-step value t +h may be indistinguishable from t, causing failure of some internal algorithms. At each start or
restart, DC05 INTEGRATE sets an internal quantity TZERO = DATA%T and TIME = 0, thereafter advancing TIME by h
(DATA%HH) on each step and returning DATA%T = TIME+TZERO. The internal tests require only that DATA%HH differs
from zero, which is more rugged if TZERO is large.

There is no need to restore end-of-step DATA%Y and DATA%YDER values before re-entering for a new step. However,
if the problem is restarted by re-entering with DATA%ISTART = 0 it will of course start with the current contents of
DATA%Y, DATA%T and DATA%YDER. See Section 2.9, for information about more advanced techniques, including the
handling of discontinuities in the definition of F.

2.8 How to continue integration by steps after the first step

The code is organized so that steps after the first step involve little (if any) additional effort on the part of the user.
To carry out another integration step, re-enter DC05 INTEGRATE without altering any quantity except as described

in the next three paragraphs. In principle, a change in any numerical parameter, other than those described in the
next three paragraphs, counts as a change to the differential equations and should be treated by restarting with a new
DATA%ISTART= 0 call. However, in practice DC05 INTEGRATE can often cope quite well with ordinary discontinuities
in F, at little greater cost than if a restart is forced.

DATA%TOL can be changed at any time; increasing it may make the equations easier to integrate, but decreasing it
makes them harder to integrate and so should usually be avoided. The user may switch to his or her own control of
DATA%YTST by setting DATA%IACC= 2, but cannot thereafter switch back again.

The value of HMAX can be changed, if DATA%IHMAX= 1 is set.
DATA%TSTOP can be set at any time, provided DATA%ITSTOP is set to 1; the code will refuse to integrate past the

current DATA%TSTOP. Once it has been reached, DATA%TSTOP must be changed or DATA%ITSTOP set to 0 in order to
continue.

2.8.1 To continue integration after a completed step

If JOB=4 or 5, call the code again to continue the integration, or first call it with DATA%ISTART=2 and DATA%T changed
(see Section 2.7.4 above) to get interpolated output within the step just completed.

2.9 Advanced output testing; handling discontinuities

The user may require output when some function of the solution Y, Y′ and the independent variable t takes a certain
value, e.g. when P(t,Y,Y′) = 0 for a known function P. As an example, suppose output is required at Y1− tY3 = 0.
Start integrating and, at each return with JOB=4, monitor:

P(DATA%T,DATA%Y,DATA%YDER) = DATA%Y(1)-DATA%T*DATA%Y(3) (2.3)

to see if it has changed sign; if not, call the code again. When P has changed sign in the most recent step, carry out an
inverse interpolation to find a value DATA%T at which P = 0. This has to be done iteratively. When the point has been
found to sufficient accuracy (for example to within DATA%TOL*DATA%HH), the necessary output action can be taken.
We discuss below how to do the inverse interpolation.
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This technique may be used to handle ordinary discontinuities in the functions. By ordinary discontinuities we
mean those where a smooth continuation would exist were it not for a change of definition of some parameter value.
Suppose a switching function P(t,Y,Y′) is constructed, such that the discontinuity occurs at P = 0. Using the old F
coding (including the smooth continuation past the switching point), locate the latter by the technique of the previous
paragraph. Then make the necessary discontinuous change, force a restart (by setting DATA%ISTART to 0, DATA%IHMAX
to 0, and resetting DATA%HMAX) and call the code again. The restart will occur to from the point in the smooth solution
at which the switching function becomes zero, which is exactly what is required. This is the most efficient means of
dealing with this kind of discontinuity, but it is by no means necessary to use it in all cases. DC05 INTEGRATE can in
fact integrate through ordinary discontinuities or near-discontinuities without serious loss of efficiency in many cases.

To do the necessary inverse interpolation we can use Newton’s method. Consider our example function, P =
Y1− tY3. We start with the interval (tl , tu) = (DATA%T0,DATA%TT). If we evaluate

dP
dt

=
dY1

dt
−Y3− t

dY3

dt

as applied to interpolated values within the current step, the values of dYi/dt returned in DATA%YDER are exact. Thus
we can use them in the above expression, calculating (DATA%YDER(1)-DATA%Y(3)-DATA%T*DATA%YDER(3)). The
Newton estimate for the point at which P = 0 is:

t = DATA%T−
(

P
dP/dt

)
evaluated at t = DATA%T

= DATA%T− (DATA%Y(1)−DATA%T∗DATA%Y(3))/(DATA%YDER(1)−DATA%Y(3)−DATA%T∗DATA%YDER(3)) .

If this lies within the current interval, set DATA%ISTART=2 and re-enter to get interpolated values there, iterating
until the change is within tolerance. If we find that the above t is outside the current interval, we carry out a binary
subdivision of either (tl ,DATA%T) or (DATA%T, tu) choosing the sub-interval in which P changes sign, until we find
a point at which the Newton iterate is within the step, or until the subdivision is already fine enough to be within
tolerance.

2.10 Overriding the default accuracy and convergence testing

DC05 INTEGRATE uses a relative accuracy test which requires that the estimate of the local error on Y(I) satisfies:

estimated local error≤ DATA%TOL∗DATA%YTST(I)

for each component. By default, the values of the components of DATA%YTST are generated as the calculation procedes.
The process has proved very reliable over a wide range of problems, and the user should think carefully before deciding
to change it. It has built-in refinements to deal with cases where a component of Y has an initial value of zero or passes
through zero during integration. DATA%YTST may removed from control by DC05 INTEGRATE and its values set by the
user, although such course is not recommended as departing from the default may sacrifice much of the reliability built
into the accuracy and convergence testing.

The user should therefore consider carefully whether to override the default calculation of DATA%YTST(I). If user
wishes to:

Accept the defaults — the user need do nothing DC05 INITIALIZE has set DATA%IACC= 0 as a default.

Override the defaults — set DATA%IACC= 2 and set DATA%YTST(I), I= 1 to NEQ.
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2.11 Ordering of vectors in DAE problems

When using HSL DC05 on DAE problems one may encounter a minor difficulty in that the problem as received may
have one or more of the algebraic components of F and Y ordered away from the first Nalg positions. The recom-
mended solution is to call the given subroutines for these evaluations through others, which carry out the necessary
permutations of vector components, before calling and after returning from the ready-coded subroutines. The simplest
way is to buffer the vectors into and from others which are actually passed to the supplied code. There is then no
danger of permuted vectors reaching HSL DC05, with disastrous results.

2.12 Error diagnostics

If DC05 INTEGRATE encounters no errors or complications, the value of DATA%IERR will be zero on return from the
subroutine. The errors and complications that can occur are as follows:

-1 a negative value was given for DATA%TOL

-2 DATA%TOL was larger than the maximum value, and was reset to 10−2.

-3 DATA%TOL was smaller than the minimum value, and was reset to 10−10.

-5 the number of equations NEQ was less than or equal to zero.

-6 the array components of DATA are too small, probably because it is being used for a larger problem without a call
to DC05 INITIALIZE.

-7 the value of DATA%TSTOP is less than DATA%T.

-8 a negative initial step estimate was given in DATA%HMAX.

-12 re-entry with illegally changed JOB.

-14 re-entry without resetting DATA%ISTART.

-15 a negative value was given for DATA%HMAX.

-16 integration was requested beyond DATA%TSTOP.

-17 to -25 the POINTER arrays in DATA have not been ASSOCIATED correctly, probably because it is being used without
a call to DC05 INITIALIZE.

-33 fatal error return.

-47 to -54 the POINTER arrays in DATA have not been correctly sized and they are too small for the problem.

-60 DATA%IHMAX has been illegally reset.

-61 DATA%ITSTOP has been illegally reset.

-62 NALG has been illegally reset.

-63 DATA%IACC has been illegally reset.

-70 a DEALLOCATE failed in DC05 INITIALIZE.

-80 an ALLOCATE failed in DC05 INITIALIZE.

-90 a DEALLOCATE failed in DC05 FINALIZE.
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2.13 Warning and error messages

Explanatory messages are printed out before an integration is terminated. This is done on the Fortran unit specified by
DATA%OUTPUT, if it has a non-negative value. The default value is 6. All the integration termination messages finish
with:

***** HSL_DC05 INTEGRATION TERMINATED FOR ABOVE REASON

The messages which precede the above termination message are self-explanatory.

2.14 Information printed

Diagnostic messages are output on unit DATA%OUTPUT1 (if non-negative). A message is output if DC05 INTEGRATE
experiences one of the difficulties: when the corrections on the first corrector iteration are so large that it is unlikely that
the accuracy will be passed; when convergence failure occurs in spite of new Jacobian matrices; and when accuracy
test failure occurs so many times in the same step that DC05 INTEGRATE reduces the order of the integration formula.
They do not necessarily indicate an error condition but merely that the integration step size has had to be reduced and
that efficiency may be impaired.

The user can control the amount of diagnostic print-out that is produced by setting DATA%KNTERR to any non-
negative value. The default value is 10.

3 GENERAL INFORMATION

Use of COMMON: None
Workspace: Provided automatically by HSL DC05.
Other subroutines: None.
Restrictions: NEQ> 0, −1≤ NALG≤ NEQ and 1≤ KMAX≤ 5.
Portability: ISO Fortran 95.

4 METHOD

The method used is especially efficient on stiff problems defined by equation (1.6) or the more general DAE problems
of equations (1.2) and (1.3).

4.1 Outline

The solution is advanced step by step in t, using (in principle) steps of fixed length h by means of a variable order
Backward Differentiation Formula (BDF) method, Gear (1971). Within each integration step, the variables Y are
represented as polynomials in t of degree k, k = 1, to 5. The algorithm for taking a step (of length h from t = xr−1 to
t = xr = xr−1 + h) updates these polynomials, making use of equations (1.2) – (1.3) by satisfying them at the end of
the new step. As these equations are in general nonlinear, this requires iteration. Newton iterations are used.

So DC05 INTEGRATE can return to the beginning of an integration step which fails its accuracy test, and repeat it
with a smaller step-size, the package defines the values of the vectors Y, Y′ to the calling program in terms of internal
vectors A, B and C and scalar arguments α,β, and h by:

Y1 = A1 +C1, Y2 = A2 +αC2, Y′ = (B+βC)/h. (4.4)
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The vectors A and B are constant during iterations and C is updated at each iteration. The scalar α is equal to 1
normally, but is set to 0 during iterations on start-up to correct the initial guess for Y1. Thus except in this preliminary
phase the first two equations of (4.4) can be written simply as:

Y = A+C. (4.5)

The scalar β is always of order unity, while h is the current integration step-length and may vary through many orders
of magnitude. Then the Newton iteration matrix:

W =

 ∂F1/∂C

∂F2/∂C

=

 J11 αJ12

J21 αJ22 +βK/h

 (4.6)

of equations (1.2) and (1.3) is used in solving such problems, from the beginning of a DAE problem or after a possible
initial transient for an explicit stiff problem. In equation (4.6) the Jacobian matrices are given by:

Ji j =
∂Fi

∂Y j
and K =

∂F2

∂Y′2
. (4.7)

The matrix W is used in Newton iterations, solving the correction equations:

WδC+F = 0 (4.8)

for the correction vector δC to be added to C.
During each integration step DC05 INTEGRATE iterates to generate the correction vector δC which causes the

equations to be satisfied at the end of the step. During these, it sets α = 1,β = O(1) (dependent on the order of the
integration formula) and h = current step size. The user must solve the equations (4.8) for δC.

On the first convergence failure, the step is repeated to obtain a new Newton iteration matrix W from the same
Jacobians J, K, on the assumption that the convergence failure is due to a change of h. On subsequent convergence
failures, the step is repeated, on the assumption that the Jacobians J, K are inaccurate as a result of changes in t and
Y. On successful convergence but failure of the accuracy testing, the step is repeated with a reduced step-size, h.

DC05 INTEGRATE also uses (4.8) to perform preliminary iterations at each start or restart, to set initial values of Y′2
and correct initial values of Y1. During these, it sets α = 0,β = 1,h = initial trial value.

4.2 Preliminary Iterations

Especially in non-linear problems, it is very common for the user’s initial estimates of algebraic components Y1, and
of the derivatives Y′2 of differential components, to be insufficiently accurate to satisfy the equations well enough to
ensure a reliable start to the solution. It is even possible for errors in Y1 to be so large that the first integration step
cannot converge to a solution satisfying the accuracy test. A few preliminary iterations are therefore carried out to
correct any such errors. The preliminary iterations are carried out using the iteration matrix with α = 0, applying
the corrections only to Y1 and Y′2. The iteration matrix is recomputed at the start of each iteration, to give true
Newton iterations. When these are complete, a single additional iteration can compute good initial derivatives Y′1 of
the algebraic components (if any, using the equation:

0 =
dF1

dt
=

∂F1

∂t
+J11Y′1 +J12Y′2 (4.9)

this iteration is based on the fact that, for the solution, the total derivative with respect to t of the F1 components must
vanish, since they are identically zero.

This is also valuable in ensuring that accuracy testing on the first integration step can succeed. It is, of course,
omitted on purely differential equation problems.
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5 EXAMPLES OF USE

In the examples shown below we show how HSL DC05 can be used to solve a stiff systems of ODEs and a DAE
problem.

5.1 Example 1 — A simple stiff problem

As a simple example of solving a stiff problem we take an example from Gear (1971). The equations solved are:

dy1

dt
= 998y1 +1998y2, y1(0) = 1, (5.10a)

dy2

dt
=−999y1−1999y2, y2(0) = 0. (5.10b)

5.1.1 Program

PROGRAM GEAR_SPEC
USE HSL_DC05_DOUBLE
IMPLICIT NONE

INTEGER, PARAMETER :: WP = KIND(0.0D+0) ! Double Precision
REAL (WP), PARAMETER :: ZERO = 0.0_WP

! Local arrays for Jacobian, decomposition of Newton matrix and K Jacobian
REAL (WP) :: FVAL(2), AJAC(2,2), ALUD(2,2), AKAC(2,2)

REAL (WP) :: T0, T1, TOUT, TFINAL ! Various times
INTEGER :: I, IERROR, IINFO, ITER, JOB, KMAX, LLP, NEQ, NALG
INTEGER, DIMENSION (2) :: IPVT ! Used by DGETRF and DGETRS
TYPE (DC05_DATA_TYPE) :: DATA ! Problem data

! Initialize Data Structure
NEQ = 2; NALG = 0; KMAX = 5
CALL DC05_INITIALIZE(NEQ,NALG,DATA,KMAX=KMAX)

! Set up output stream
LLP = 16; DATA%OUTPUT = LLP
OPEN (UNIT=LLP,FILE=’temp’,STATUS=’UNKNOWN’,ACTION=’READWRITE’, &

IOSTAT=IERROR)

! Prepare to start the integration
DATA%TOL = 1.E-2_WP ! Set relative error tolerance
JOB = 0
TOUT = 1.E-3_WP ! Initial output point
DATA%HMAX = TOUT*DATA%TOL ! Initial step size
DATA%T = ZERO
DATA%Y(:) = (/1.E0_WP,ZERO/)
DATA%YDER(:) = (/998.0_WP,-999.0_WP/)
TFINAL = 200.0_WP ! Time for end of output
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! Set K matrix here as it is constant
AKAC(:,:) = ZERO; AKAC(1,1) = -1.E0_WP; AKAC(2,2) = -1.E0_WP
AJAC(:,:) = ZERO ! Clear AJAC for safety first time
WRITE (LLP,’(a)’) &

’ DATA%KOUNT(1:5) TIME Y1 Y2’
T0 = DATA%T
DO ! Main loop

CALL DC05_INTEGRATE(JOB,ITER,DATA)
IF (JOB<=0 .OR. JOB>5) THEN

! Error reporting
WRITE (LLP,’(/A,I3,2(A,ES13.5))’) &

’!!! ERROR JOB = ’, JOB,’ ! T0 = ’, T0, ’ T = ’, DATA%T
WRITE (LLP,65) (I,DATA%Y(I),I=1,2)

65 FORMAT (/,3(:,3X,’Y(’,I2,’)=’,D13.5,3X))
! Error handling

IF (JOB<-30) STOP ! Fatal Error
DATA%ISTART = 1
IF (JOB<=-5) DATA%ISTART = 0 ! Force Restart
IF (JOB==-2) THEN
DATA%ISTART = 0
DATA%HMAX = TOUT*DATA%TOL ! Reset step size

END IF
CYCLE ! Call code again

END IF
IF (JOB==1) THEN ! Construct Jacobian

! AJAC contains DF/DY
AJAC(1,1) = 998.0_WP + 1998.0_WP*DATA%Y(2)
AJAC(2,1) = -999.0_WP - 1999.0_WP*DATA%Y(2)
AJAC(1,2) = 998.0_WP*DATA%Y(1) + 1998.0_WP
AJAC(2,2) = -999.0_WP*DATA%Y(1) - 1999.0_WP

END IF
IF (JOB<=2) THEN

! Construct and factor Newton matrix
! ALUD contains - ALFA*DF/DY - (BETA/H)*DF/DY’ = - DF/DC = - W

ALUD(:,:) = -AJAC(:,:)*DATA%ALFA - AKAC(:,:)*DATA%BETA/DATA%HH
CALL DGETRF(2,2,ALUD,2,IPVT,IINFO) ! Get LU factors of W

END IF
IF (JOB<=3) THEN

! Calculate functions and correction
FVAL(1) = 998.0_WP*DATA%Y(1) + 1998.0_WP*DATA%Y(2) - DATA%YDER(1)
FVAL(2) = -999.0_WP*DATA%Y(1) - 1999.0_WP*DATA%Y(2) - DATA%YDER(2)

! Replace F by DELTAC = - WINVERSE*F, solving W*DELTAC + F = 0
CALL DGETRS(’N’,2,1,ALUD,2,IPVT,FVAL,2,IINFO)

! Copy values of correction vector returned by DGETRS in FVAL into DELTAC
DATA%DELTAC(:) = FVAL(:)
CYCLE

ELSE IF (JOB==4) THEN
! Completed step; test for output

IF (TOUT>DATA%T) THEN ! Interpolate for output
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T0 = DATA%T
CYCLE

ELSE IF (TOUT==DATA%T) THEN ! Produce output
WRITE (LLP,’(5I5,4ES13.5)’) DATA%KOUNT, DATA%T, DATA%Y

ELSE IF (TOUT<DATA%T) THEN ! Interpolate
IF (TOUT<T0) THEN ! Error condition

WRITE (LLP,’(/A,I3,2(A,ES13.5))’) &
’!!! ERROR JOB = ’, JOB,’ ! T0 = ’, T0, ’ T = ’, DATA%T

WRITE (LLP,65) (I,DATA%Y(I),I=1,2)
END IF
T1 = DATA%T
DATA%T = TOUT; DATA%ISTART = 2
CYCLE

END IF
ELSE IF (JOB==5) THEN ! Output point reached

WRITE (LLP,’(5I5,4ES13.5)’) DATA%KOUNT, DATA%T, DATA%Y
TOUT = TOUT*1.0E1_WP ! Increment TOUT
IF (TOUT<=T1) THEN ! Another interpolation is required

DATA%T = TOUT; DATA%ISTART = 2
END IF

END IF
IF (TOUT>=TFINAL) EXIT

END DO
CALL DC05_FINALIZE(DATA) ! Tidy up

END PROGRAM GEAR_SPEC

The output produced by GEAR SPEC is as follows:

DATA%KOUNT(1:5) TIME Y1 Y2
13 13 23 2 6 1.00000E-03 1.62985E+00 -6.30851E-01
27 27 50 2 9 1.00000E-02 1.97989E+00 -9.89841E-01
35 35 60 2 11 1.00000E-01 1.80876E+00 -9.03907E-01
55 55 169 9 23 1.00000E+00 7.35478E-01 -3.67564E-01
130 135 411 16 45 1.00000E+01 9.12276E-05 -4.56052E-05
218 232 562 16 68 1.00000E+02 7.08661E-16 -1.03648E-15

5.2 Example 2 — A stiff ODE Problem from chemical kinetics

As an example of a system of stiff ODE’s, we use a model of a chemical reaction which was first described by
Robertson (1966), and has become a model for a stiff system of ODE’s.

The mass action kinetics are represented by the following equations:

dy1

dt
=−0.04y1 +104y2y3, y1(0) = 1, (5.11a)

dy2

dt
= 0.04y1−104y2y3−3×107y2y2, y2(0) = 0, (5.11b)

dy3

dt
= 3×107y2y2, y3(0) = 0. (5.11c)
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We use the LINPACK routines DGEFA and DGESL Dongarra et al. (1979) to factorize, by performing a LU decom-
position, and solve the Newton iteration matrix. The code and its output is not reproduced here, but is available with
the source code for HSL DC05. From the solution it can be seen that t→ ∞,y1→ 0,y2→ 0 and y3→ 1..

5.3 Example 3 — a DAE problem

As an example of a DAE problem we use the ‘Chemical Akzo Nobel’problem from Lioen and de Swart (1999). The
problem originates from Akzo Nobel Central research in Arnhem, The Netherlands.

The mathematical formulation of the problem is given below in equations (5.12a – 5.12f):

dy1

dt
=−2r1 + r2− r3− r4, (5.12a)

dy2

dt
=−1

2
r1− r4−

1
2

r5 +Fin, (5.12b)

dy3

dt
= r1− r2 + r3, (5.12c)

dy4

dt
=−r2 + r3−2r4, (5.12d)

dy5

dt
= r2− r3 + r5, (5.12e)

0 = Ks · y1 · y4− y6, (5.12f)

where the ri, i = 1, . . .5, and Fin are given by:

r1 = k1 · y14 · y
1
2
2 , (5.13a)

r2 = k2 · y3 · y4, (5.13b)

r3 =
k2

K
· y1 · y5, (5.13c)

r4 = k3 · y1 · y42, (5.13d)

r5 = k4 · y62 · y
1
2
2 , (5.13e)

Fin = klA ·
( p(CO2)

H
− y2

)
. (5.13f)

The parameters in equations (5.13a – 5.13f) are as follows:

k1 = 18.7, k4 = 0.42, Ks = 115.83,
k2 = 0.58, K = 34.4, p(CO2) = 0.9,
k3 = 0.09, klA = 3.3, H = 737.

The consistent initial vectors are as follows:

y(0) =
(
0.444,0.00123,0,0.007,0,Ks · y1(0) · y4(0)

)T
,

dy
dt

= F(0).

where F is the right hand sides of equations (5.13a – 5.13f). Full details of the problem can be found in Lioen and
de Swart (1999),

The code and its output is not reproduced here, but is available with the source code for HSL DC05. We use
HSL DC05 to solve the ‘Chemical Akzo Nobel’ problem. Once again we use the LINPACK routines DGEFA and DGESL
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(Dongarra et al., 1979) to factorize, by performing a LU decomposition, and solve the Newton iteration matrix. For
small dense Newton iteration matrices the LINPACK routines perform very well. The values of Y(i) obtained, i =
1, . . .6, are in agreement with the solution in (Lioen and de Swart, 1999).

5.3.1 Program

An alternative to the use of a series of IF constructs, as in Section 5.1, is to use the SELECT CASE construct. Note
however, that the Fortran 90/95 SELECT CASE construct does not allow ‘a drop through’ between the individual cases.
If the user prefers to use a SELECT CASE construct care must be taken to ensure that the correct sequence events is
followed i.e. the evaluation of a new Jacobian is always followed by, the formation and decomposition of a new
Newton iteration matrix, which is always followed by a function evaluation and Newton correction, which is always
followed by a call to DC05 INTEGRATE. One way achieving this is to combine a DO construct with a SELECT CASE
construct together with the introduction of an additional ‘state variable’, IDID, see the code itself.
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