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1 SUMMARY

This subroutine divides a polynomial by a linear factor to obtain the coefficients of the reduced polynomial,
i.e. given a polynomial of degree n

nP(x) = a + a x + ... +a x1 2 n+1

with real coefficients and given a real linear factor (x−ξ), it calculates b i=1,2,...,n such thati

n−1P(x) ≡ (x −ξ)(b + b x + ... +b x ) + r1 2 n

The remainder r is assumed to be zero, i.e. ξ is assumed to be a close approximation to a root of P(x). The method
avoids magnifying inaccuracies in ξ during the calculation. Note that b =a .n n+1
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2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version

CALL PD04A(A,B,ROOT,N,NP1)

The double precision version

CALL PD04AD(A,B,ROOT,N,NP1)

A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the coefficients
a i=1,2,...,n+1 of the original polynomial P(x). The array length must be at least n+1 (see argument NP1).i

B is a REAL (DOUBLE PRECISION in the D version) array which is set by the subroutine to contain b i=1,2,...,n thei

coefficients of the reduced polynomial. The length of the array must be at least n.

ROOT is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of the
estimate of the root ξ.

N is an INTEGER variable which must be set by the user to n the degree of the polynomial P(x).

NP1 is an INTEGER variable which must be set by the user to the value n+1. It is used in the subroutine to dimension
the array A.

3 GENERAL INFORMATION

Use of common: none.

Workspace: none.

Other routines called directly: none.

Input/output: none.

Restrictions:

n > 0,
NP1 = n+1.
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4 METHOD
k−1The subroutine first finds k such that |a ξ | takes its maximum value. Then it performs the deflationk

b = a ,n n+1

b =ξb + a i=n−1,n−2,...,ki i+1 i+1

and

b = −a /ξ,1 1

b = (b − a )/ξ i=2,3,...,k−1.i i−1 i

It has been shown by G.Peters and J.H.Wilkinson, J. Inst. Maths. Applics. 8 (1971), pp 21, that this method will
always produce a reduced polynomial B(x) such that (x−ξ)B(x) differs little from the original polynomial P(x). The
code has been carefully designed to avoid any risk of overflow during the search for k.
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