

PACKAGE SPECIFICATION

HSL ARCHIVE

1 SUMMARY

To find the **first** m **terms of the Taylor series expansion of** $B(x) = \exp\{A(x)\}$ such that $B'(x) \equiv A'(x)B(x)$ and $B(0) = \exp(a_1)$. Let

$$A(x) = a_1 + a_2x + a_3x^2 + ... + a_{n+1}x^n$$

then the Taylor series expansion

$$B(x) = b_1 + b_2 x + b_3 x^2 + ... + b_m x^{m-1} + ...$$

is obtained by considering identities between A(x) and B(x).

ATTRIBUTES — **Version:** 1.0.0. **Remark:** Formerly PD02C **Types:** PD06A; PD06AD. **Original date:** December 1970. **Origin:** M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version

CALL PD06A(A,N,B,M)

The double precision version

CALL PD06AD(A,N,B,M)

- is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial A(x), so that $A(j) = a_j$, j=1, 2, ..., n+1. Note that the elements of A are temporarily modified by the subroutine to (J-1)*A(J), J=2, 3,..., N+1 but are restored to their original values before returning to the caller.
- N is an INTEGER variable which must be set by the user to n the degree of the polynomial A(x).
- is a REAL (DOUBLE PRECISION in the D version) array of length at least m in which the subroutine will return the first m terms of the expansion B(x), i.e., $B(j) = b_j$, j=1, 2,..., m.
- is an INTEGER variable which must be set by the user to m the number of terms required from the expansion B(x).

3 GENERAL INFORMATION

Workspace: none.

Use of common: none.

Other routines called directly: none.

Input/output: none.

Restrictions: $n \ge 0, m \ge 0$.

PD06 HSL ARCHIVE

4 METHOD

Assume $B(x) = \exp\{A(x)\}$, then at x=0, $b_1 = \exp(a_1)$. Now differentiate $B(x) = \exp\{A(x)\}$ to obtain B'(x) = A'(x)B(x), and then equate coefficients of like powers of x to obtain the recurrence relation

$$\begin{split} b_1 &= \exp(a_1), \\ b_i &= \frac{1}{(i-1)} \big[a_2 b_{i-1} + 2 a_3 b_{i-2} + \dots + (i-1) a_i b_1 \big], \end{split}$$

for i = 2, 3, ..., m.

Documentation date: 8th February 2011