PACKAGE SPECIFICATION

HSL ARCHIVE

1 SUMMARY

VC04 fits a straight line to data by the least squares method.

The subroutine takes data values x_i , y_i , i=1, 2, ..., m ($m \ge 2$) and optionally weights w_i , i=1, 2, ..., m, and finds the line y=a+bx where the parameters a and b are such that

$$\sum_{i=1}^{m} w_{i} \{ y_{i} - (a + bx_{i}) \}^{2}$$

is minimised.

The weights may be omitted (which is as if $w_i=1$, i=1, 2,...,m). There are options for obtaining information relevant to the problem of fitting x as a function of y, i.e. x(y)=p+qy, and information is also available for the general analysis of the correlation problem.

ATTRIBUTES — Version: 1.0.0. Types: VC04A, VC04AD. Calls: FD05, OA03. Original date: August 1985. Origin: J.Ledger, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

To fit a straight line to data using **no weights** and returning only the parameter values:

The single precision version

The double precision version

To fit a straight line to data using weights and returning only parameter values:

The single precision version

The double precision version

To fit a straight line using **weights** and returning, in addition to the parameter values, their **standard deviations**, the residual standard deviation and the correlation coefficient:

The single precision version

The double precision version

```
CALL VC04CD(X,Y,W,M,PAR,RHSTD,CORR,IPRINT)
```

- X,Y are REAL (DOUBLE PRECISION in the D version) arrays which the user must set to the data values $x_i, y_i, i=1, 2,..., m$.
- is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the weights w_i i=1, 2,..., m on a call to VC04B/BD or VC04C/CD. **Restriction**: W(I) \geq 0, I=1, 2,..., M.

VC04 HSL ARCHIVE

- M is an INTEGER set by the user to the number, m, of data points. **Restriction**: $M \ge 2$.
- A,B are REAL (DOUBLE PRECISION in the D version) variables which are set to the values of the parameters a and b defining the fitted straight line y=a+bx on a call to VC04A/AD or VC04B/BD.
- PAR is a REAL (DOUBLE PRECISION in the D version) array of length at least 4 which need not be set by the user. On return from VC04C/CD it will contain the parameters a and b defining the fitted straight line y=ax+b, and their estimated standard deviations, i.e. PAR(1)=a, PAR(2)=b, PAR(3)=s(a), PAR(4)=s(b).
- RHSTD is a REAL (DOUBLE PRECISION in the D version) variable which need not be set by the user. On return from VC04C/CD, contains an estimate of the residual standard deviation (see section 4).
- CORR is a REAL (DOUBLE PRECISION in the D version) variable which need not be set by the user. On return from VC04C/CD, it contains an estimate of the coefficient of correlation (see section 4).
- IPRINT is an INTEGER variable which must be set by the user to specify one of the following print options:

if IPRINT=0, no printing is done,

if IABS(IPRINT) = 1, the parameters a and b, their estimated standard deviations, the residual standard deviation and the correlation coefficient are printed,

if IABS(IPRINT) = 2, the corresponding details for the fit x=p+qy and the means and variances of the data are also printed,

if IPRINT < 0, a table of the data points, and weights if appropriate, is also printed.

2.2 Common

In the single precision version:

COMMON/VC04D/LP,NDF,CCORR,AA,BB,ASTD,BSTD,ABCOV,RSTD,P,Q, PSTD,QSTD,PQCOV,RHOSTD,XBAR,YBAR,S2XX,S2YY,S2XY COMMON/VC04H/IERR

In the double precision version:

COMMON/VCO4DD/LP,NDF,CCORR,AA,BB,ASTD,BSTD,ABCOV,RSTD,P,Q,

* PSTD,QSTD,PQCOV,RHOSTD,XBAR,YBAR,S2XX,S2YY,S2XY

COMMON/VC04HD/IERR

- LP is an INTEGER variable, with default value 6, set by BLOCK DATA VC04G/GD, which holds the stream number for printing. This may be reset by the user before calling the subroutine.
- NDF is an INTEGER variable which is set by the subroutine to the number of degrees of freedom (in fact this will always be m-2).
- CCORR is a REAL (DOUBLE PRECISION in the D version) variable set by the subroutine to the coefficient of correlation.
- IERR is an INTEGER variable which specifies one of the following error conditions:

```
if IERR = 0, no errors,
```

if IERR > 0, a weight is negative,

if IERR = -1, the weights sum to zero,

if IERR = -2, there is an insufficient number of points,

if IERR = -3, the variance of x is zero,

if IERR = -4, the variance of y is zero and y=a.

Documentation date: 8th February 2011

HSL ARCHIVE VC04

Regression y=a+bx

AA, BB are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the parameters a and b.

ASTD, BSTD, ABCOV are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the standard deviations of a and b and to the covar(ab) respectively.

RSTD is a REAL (DOUBLE PRECISION in the D version) variable set by the subroutine to the residual standard deviation.

Regression x=p+qy

P,Q are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the parameters p and q.

PSTD, QSTD, PQCOV are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the standard deviations of p and q and to the covar(pq) respectively.

RHOSTD is a REAL (DOUBLE PRECISION in the D version) variable set by the subroutine to the residual standard deviation.

Data statistics

XBAR, YBAR are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the data means \bar{x} and \bar{y} .

S2XX, S2YY, S2XY are REAL variables set by the subroutine to the variances s_{xx}^2 and s_{yy}^2 and the covariance s_{xy}^2 , see section 4.

3 GENERAL INFORMATION

Use of common: VC04D/DD, BLOCK DATA VC04G/GD, VC04H/HD.

Other routines called directly: FD05, _DOT, _AMAX, OA03A/AD are called.

Input/output: Output is under the control of arguments IPRINT and LP.

Restrictions: $m \ge 2$ and $w_i \ge 0$, i=1, 2,..., m.

4 METHOD

The subroutine uses the following formulae:

$$\bar{w} = \sum_{i=1}^{m} w_{i} \qquad s_{xx}^{2} = \frac{m}{m-1} \sum_{i=1}^{m} \frac{w_{i}(x_{i} - \bar{x})^{2}}{\bar{w}}$$

$$\bar{x} = \sum_{i=1}^{m} \frac{w_{i}x_{i}}{\bar{w}} \qquad s_{yy}^{2} = \frac{m}{m-1} \sum_{i=1}^{m} \frac{w_{i}(y_{i} - \bar{y})^{2}}{\bar{w}}$$

$$\bar{y} = \sum_{i=1}^{m} \frac{w_{i}y_{i}}{\bar{w}} \qquad s_{xy}^{2} = \frac{m}{m-1} \sum_{i=1}^{m} \frac{w_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\bar{w}}$$

The regression parameters are calculated simply by:

$$b = s_{yy}^2/s_{yy}^2$$
, $a = \bar{y} - b\bar{x}$ and $q = s_{yy}^2/s_{yy}^2$, $p = \bar{x} - q\bar{y}$

The coefficient of correlation is

$$r = \sqrt{bq}$$

Estimates of the weighted residual variances are

Documentation date: 8th February 2011

VC04 HSL ARCHIVE

$$s_{ab}^2 = \frac{1}{m-2} \sum_{i=1}^m w_i \{ y_i - (a+bx_i) \}^2$$
 and $s_{pq}^2 = \frac{1}{m-2} \sum_{i=1}^m w_i \{ y_i - (p+qx_i) \}^2$

The estimates of the parameter standard deviations are obtained from the variances

$$\operatorname{var}(b) = \frac{m-1}{m} \frac{s_{ab}^{2}}{\bar{w} s_{xx}^{2}}, \operatorname{var}(a) = \operatorname{var}(b) \left\{ \frac{m-1}{m} s_{xx}^{2} + \bar{x}^{2} \right\}$$

$$\operatorname{var}(q) = \frac{m-1}{m} \frac{s_{pq}^{2}}{\bar{w} s_{xy}^{2}}, \quad \operatorname{var}(p) = \operatorname{var}(q) \left\{ \frac{m-1}{m} s_{yy}^{2} + \bar{y}^{2} \right\}$$

The covariances are

$$covar(ab) = -\bar{x} var(b), covar(pq) = -\bar{y} var(q).$$

5 EXAMPLE OF USE

The use of the subroutine can be illustrated by the following test program:

```
C
C
      TEST FOR VC04 USING THREE DATA POINTS
 С
      DIMENSION X(10),Y(10)
      DOUBLE PRECISION AA, BB, X, Y
      DOUBLE PRECISION XX
      COMMON/VC04DD/LP, NDF, XX(18)
CCC
     M EQUALS THE NUMBER OF DATA POINTS
      X(1)=1.1
      X(2)=1.9
      X(3) = 3.05
      Y(1)=0.9
      Y(2)=1.95
      Y(3)=2.99
      IPRINT=1
      CALL VC04AD(X,Y,M,AA,BB,IPRINT)
```

This produces the following output

Documentation date: 8th February 2011