
VE03
PACKAGE SPECIFICATION HSL ARCHIVE

1 SUMMARY

To find the minimum of a general function f(x) of n variables x = x ,x ,...,x subject to the variables satisfying 2n1 2 n

simple bounds

l ≤ x ≤ u i=1,2,...,ni i i

and m−2n linear constraints
n

c x ≥ d i=1,2,...,m−2n∑ ji j i
j=1

where any of the bounds and constraints may be made strict equalities. Derivatives ∂f/∂x j=1, 2,..., n are required.j

The method is given in R.Fletcher, AERE TP.431. There are several modes of operation and certain modes require
the user to supply an initial feasible solution. Scaling can be specified and a subroutine must be provided to compute
values of the function f(x) and its derivatives.

ATTRIBUTES — Version: 1.0.0. Remark: See also VE01. Types: VE03A; VE03AD. Calls: FD05, LA02, _DOT and
VE02. Original date: June 1971. Origin: R.Fletcher, Harwell.

2 HOW TO USE THE PACKAGE

The method used by VE03 is iterative and requires an initial feasible point x to be calculated (i.e. one which
satisfies all the bounds and linear constraints). Such a point can be supplied by the user or calculated automatically ––
see Section 2.5. The user must provide a subroutine to calculate f(x) for any feasible x, and also the vector of first
derivatives g(x) (where g (x) = ∂f/∂x) –– see Section 2.2.i i

The subroutine returns to the user the best feasible point x which has been found, and the corresponding f(x) and
g(x). Some information about which constraints are active (i.e. are equalities at the solution and therefore restricting
the function from being reduced) is also given, together with the residuals of the linear constraints.

If a sequence of problems is being solved in which f(x) is modified slightly each time, but the bounds and
constraints remain the same, then increased efficiency is possible –– see Section 2.5.

2.1 Argument list

The single precision version

CALL VE03A(FUNCT,N,M,C,IC,D,BDL,BDU,
* F,G,GM,IGM,CN,X,K,KE,H,IH,LT,HL,LP,S,
* HK,HH,EPS,MAXFN,IPRINT,MODE)

The double precision version

CALL VE03AD(FUNCT,N,M,C,IC,D,BDL,BDU,
* F,G,GM,IGM,CN,X,K,KE,H,IH,LT,HL,LP,S,
* HK,HH,EPS,MAXFN,IPRINT,MODE)

FUNCT the name of a subroutine provided by the user described in Section 2.2. It must be declared in an EXTERNAL
statement in the calling program.

N an INTEGER variable set by the user to the total number of variables n.

M an INTEGER variable set by the user to the total number of constraints. The upper and lower bounds each count
as n constraints and must be given explicitly, so m ≥ 2n.

All use is subject to licence. VE03 v 1.0.0
http://www.hsl.rl.ac.uk/ 1 Documentation date: 8th February 2011

VE03 HSL ARCHIVE

C is a REAL two-dimensional array to be set to the coefficients on the left hand side of the constraints c , j=1, 2,...,ji

n and i=1, 2,..., m−2n. C must have n rows and m−2n columns. The i-th column of C contains the coefficient
Tvector c of the constraint c x ≥ d . If there are no general constraints, whence m=2n, C will not be referred toi i i

and a dummy argument (GM say) can be inserted in the calling sequence.

IC is an INTEGER variable which must be set by the user to the first dimension of C in the dimension statement
which assigns space to C. Restriction: IC ≥ n.

D is a REAL (DOUBLE PRECISION in the D version) array of m−2n elements which must be set by the user to d ,i

i=1, 2,..., m−2n, the right hand sides of the constraints. If m=2n, D is not referred to and a dummy argument (G
say) can be inserted in the calling sequence.

BDL is a REAL (DOUBLE PRECISION in the D version) array of n elements which must be set by the user to the lower
bounds l , i=1, 2,..., n, e.g. BDL(I) is set to the lower bound l on the i-th variable. All n elements must be set.i i

30Any elements corresponding to unbounded variables should be set to a large negative value, such as −10 .

BDU is a REAL (DOUBLE PRECISION in the D version) array of n elements which must be set by the user to the upper
bounds on the variables u , i=1, 2,..., n, e.g. BDU(i) is set to the upper bound on the i-th variable. All n elementsi

must be set. Any elements corresponding to unbounded variables should be set to a large positive value, such as
3010 .

F is a REAL (DOUBLE PRECISION in the D version) variable which on exit from VE03 contains the least value of
f(x) which has been found.

G is a REAL (DOUBLE PRECISION in the D version) array of n elements which on exit from VE03 contains the
derivatives g(x) which correspond to F above.

GM is a REAL (DOUBLE PRECISION in the D version) two-dimensional array of at least n rows and n columns
representing the n×n symmetric matrix Γ (see Harwell report TP 431) which approximates the Hessian matrix
of second derivatives of f(x). If MODE=1 or 2 (see Section 2.5) all elements of GM(I,J), for all I,J=1, 2,...,
N must be set, and GM(I,J) must equal GM(J,I) for all I,J. Any information is useful, but failing this set Γ
equal to the null matrix or the identity matrix and the approximation will be improved automatically. If
MODE=3, see Section 2.5.

IGM is an INTEGER variable which must be set by the user to the first dimension of GM in the dimension statement
which assigns space to GM. Restriction: IGM ≥ n.

CN is a REAL (DOUBLE PRECISION in the D version) array of m−2n elements which on exit from VE03 contains the
Tresiduals of the linear constraints, that is CN(I) contains c x− d where x is the contents of X below. Wheni i

m=2n, CN is not set and a dummy (G say) can be supplied in the calling sequence.

X is a REAL (DOUBLE PRECISION in the D version) array of length at least n which is set depending on the value
of MODE. If MODE=1 the user must set X to a feasible point, e.g. a feasible point x = x , x ,...,x must be set in1 2 n

X(1), X(2), ...,X(N). If MODE=2 or 3 refer to Section 2.5 for setting instructions.

On exit from VE03, X contains the point x for which f(x) is the least function value found.

K is an INTEGER variable which must be set to zero if MODE=1. If MODE=2 or 3 see section 2.5. On exit from
VE03, K gives the number of active constraints.

KE is an INTEGER variable set to the combined number of bounds and constraints which are to be designated as
equalities. If KE > 0, use of MODE=1 is not permitted. If MODE=3 see section 2.5.

H is a REAL (DOUBLE PRECISION in the D version) two-dimensional array of at least 2n rows and 2n columns
used as working space. If MODE=3 see section 2.5.

IH is an INTEGER variable which must be set by the user to the first dimension of H in the dimension statement
which assigns space to H. Restriction: IH ≥ 2n.

LT is an INTEGER array of at least 2n+m elements, partly used as working space. It need not be set unless MODE=2

All use is subject to licence. VE03 v 1.0.0
http://www.hsl.rl.ac.uk/ 2 Documentation date: 8th February 2011

HSL ARCHIVE VE03

or 3, in which case see section 2.5.

On exit from VE03, the first K elements of LT will give the index numbers of the active constraints in the
following order: lower bounds 1 →n, upper bounds n+1 → 2n, constraints 2n+1 →m.

2HL is a REAL (DOUBLE PRECISION in the D version) array of n elements used as working space. Not to be set
unless MODE=3 whence see section 2.5.

LP is an INTEGER array of at least n elements used as working space. Not to be set unless MODE=3 whence see
section 2.5.

S is a REAL (DOUBLE PRECISION in the D version) array of at least n elements which controls scaling and is to be
set in accordance with section 2.5.

HK is a REAL (DOUBLE PRECISION in the D version) variable used as an upper bound to the change made in any
scaled variable. Must be set on entry: typically to 0.1 of the largest estimated error in any scaled variable. HK <
2×EPS. HK will be adjusted suitably during the iteration, and its setting is not critical. It is altered by the
subroutine.

HH is a REAL (DOUBLE PRECISION in the D version) variable to be set to an estimate of the maximum error in any
scaled variable. Set HH on the large side if in doubt. Again its setting is not critical.

EPS is a REAL (DOUBLE PRECISION in the D version) variable to be set to the absolute accuracy required in all the
scaled variables.

MAXFN is an INTEGER variable set to the maximum number of times which FUNCT can be called.

IPRINT is an INTEGER variable set to control printing –– see Section 2.4.

MODE is an INTEGER variable set to control the mode of operation of VE03 –– see Section 2.5.

2.2 The user subroutine

The user must supply a subroutine, to which he assigns an identifier of his choice (XYZ say). This should be as
follows:

SUBROUTINE XYZ(N,X,F,G)
DIMENSION X(*),G(*)

......
statements to evaluate f(x) and g(x) where x is given in X(i). f(x) should be left in F and g (x)=∂f/∂x ini i i

G(I) for all i=1,2,...,n.
.....

RETURN
END

If the derivation of g is at all complicated, the user is strongly advised to check the derivatives by differences using
relationships such as

f(x+he) − f(x)1g (x) =1 h

where e is the vector (1,0,0,...,0), and so on.1

2.3 Printing

Printing starts on a new page with the text ENTRY TO VE03. At the beginning of the first iteration, and on every
subsequent IPRINT iterations the numbers

IT ICT
F
X(1),X(2),...,X(N) (8 to a line)
G(1),G(2),...,G(N) (8 to a line)

All use is subject to licence. VE03 v 1.0.0
http://www.hsl.rl.ac.uk/ 3 Documentation date: 8th February 2011

VE03 HSL ARCHIVE

are printed as shown. In addition to the definitions of Section 2.1 IT is the previous number of iterations, and ICT the
number of times the user subroutine has been called. The same information is printed out on exit, with additionally

CN(1),CN(2),...,CN(M-2*N) (8 to a line)

if M > 2*N. However no printing at all will take place if IPRINT=0. If there is no feasible point to the constraints the
diagnostic NO FEASIBLE POINT will be printed.

2.4 Scaling

The variables in the problem may be scaled so that changes of similar magnitude are made in each, and this can be
expected to improve the rate of convergence. The user supplies a vector S(1), S(2),...,S(N) and the subroutine
scales any changes, DL(I) say, in the variables by dividing by S(I). The largest element of S(I) should be 1, and all
elements should be greater than 0. Thus the size of the elements of S(I) should be proportional to the likely changes
to the variables.

2.5 Modes of operation

The subroutine will operate in three modes to the setting of the parameter MODE.

MODE=1 is the usual setting if the user can supply a feasible point, and if all the constraints are inequalities.

MODE=2 should be set if a feasible point is required to be determined automatically.

MODE=3 concerns the case when a similar problem has just been solved with a slightly modified f(x) but with the same
constraints.

When using MODE=2 the setting of parameters X, K, KE and LT should follow the advice given in the specification
sheet for setting these parameters on entry to the feasible point subroutine LA02. When using MODE=3 the contents of
GM, X, K, KE, H, LT, HL and LP should be left undisturbed from the previous call of VE03.

3 GENERAL INFORMATION

Use of common: None.

Workspace: See under ‘restrictions’ below.

Other routines called directly: VE02A/AD, LA02A/AD, FD05, and _DOT.

Restrictions: VE03 calls MB01 which has a restriction of 100 variables which in turn imposes a restriction of 50
variables on VE03. Furthermore VE03 uses named common for work space and this storage is restricted in that
n≤50 and m≤250. To increase these restrictions above these amounts (to NB and MB say), then MB01 must be
recompiled with an upper limit of 2*NB variables, and the following named common statements included in the
user’s MAIN program (where MM=MAX0(7*NB,2*NB+MB))

COMMON/VE03B/ DL(MM)
COMMON/VE03C/ B(N)
COMMON/VE03D/ BL(N)
COMMON/VE03E/ BU(N)
COMMON/VE03F/ U(N)
COMMON/VE03G/ V(N)
COMMON/VE03H/ LB(N)

If only the M limit is to be increased, then of course MB01 need not be recompiled, and only the first of the
above named common statements need be included.

All use is subject to licence. VE03 v 1.0.0
http://www.hsl.rl.ac.uk/ 4 Documentation date: 8th February 2011

HSL ARCHIVE VE03

4 METHOD

The method is that described by R. Fletcher ‘An efficient, globally convergent, algorithm for unconstrained and
linearly constrained optimization problems’, see report TP 431. Some modifications have been made to the method,
which have been incorporated into this subroutine, and are described briefly in Section 2.6. The method is iterative
and requires an initial feasible point x to be calculated (i.e. one which satisfies all the bounds and linear constraints).

Modifications to TP 431

In TP 431 it was suggested that a multiplier θ be introduced into the formula by which Γ (i.e. GM) was updated, in
order to maintain positive definiteness. It was found on writing a Fortran subroutine to do this that this process could
give rise to very slow convergence. Hence the multiplier θ has not to be used with the result that Γ can be a general
indefinite matrix. A corresponding difficulty is caused in that the global minimum of the quadratic program should be
found. However for the convergence proofs to be valid it is only necessary that a local minimum of the quadratic
program be found which is sufficiently small in a certain sense. The measure of smallness involves solving a linear
program over the same constraint set at each iteration. Modifications to make the program operate in this way have
been introduced, so the performance figures given in TP 431 are still valid. Although the modifications have
generated considerable extra code, there is good reason to think that any extra computing time required will be
negligible.

A further modification has also been made to the ideas which enable the quadratic program to be solved more
3 3efficiently. The estimated number of operations per iteration is now 2×n as against 2.5×n with the modification

3suggested in TP 431 and 4×n when using direct solution.

All use is subject to licence. VE03 v 1.0.0
http://www.hsl.rl.ac.uk/ 5 Documentation date: 8th February 2011

