1 SUMMARY

Given that \(A \) is a symmetric \(n \times n \) matrix and given that \(B \) is the \((n-1) \times (n-1) \) matrix which is the inverse of the matrix obtained by deleting the last row and column of \(A \), to replace \(B \) by the inverse of \(A \).

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version

CALL MB05A (A,B,N,IDIM)

The double precision version

CALL MB05AD (A,B,N,IDIM)

\(A \) is a REAL (DOUBLE PRECISION in the D version) array for the elements of the matrix \(A \).

\(B \) is a REAL (DOUBLE PRECISION in the D version) for the elements of \(B \).

\(N \) is an INTEGER giving the dimension of \(A \).

\(IDIM \) is an INTEGER specifying the first dimensions of the arrays \(A \) and \(B \), so that in the calling routine there will normally be a statement of the form

\[
\text{DIMENSION A(IDIM,), B(IDIM,)}
\]

3 GENERAL INFORMATION

Use of common: None.

Workspace: None.

Input/output: None.

Restrictions:

\(N \geq 2 \)

4 METHOD

The matrix \(A \) and the required \(B \) are partitioned in the following way:

\[
\begin{bmatrix}
A_\alpha & \alpha' \\
\alpha & a
\end{bmatrix}
\]

\[
\begin{bmatrix}
B_\beta \\
\beta
\end{bmatrix}
\]

and the required parts of \(B \) are computed as follows: if

\(y = A_\beta \alpha \)

then

\(b = [a - \alpha' y]^{-1} \)

\(\beta = -by \)
and

\[B_0 = A_0^{-1} - \beta y. \]