1 SUMMARY

Given a sparse matrix A stored in a compact form and two vectors x and y, the routine evaluates either of the matrix-vector products $y + Ax$ or $y + A^T x$.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version

CALL MC09A(M,N,A,X,Y,TRANS,IRN,IP)

The double precision version

CALL MC09AD(M,N,A,X,Y,TRANS,IRN,IP)

M is an INTEGER variable set by the user to m the number of rows in the matrix. It is not altered by the subroutine.

N is an INTEGER variable set by the user to n the number of columns in the matrix. It is not altered by the subroutine.

A is a REAL (DOUBLE PRECISION in the D version) array holding the nonzero matrix elements. These are stored by columns, e.g. $a_{11}, a_{13}, a_{19}, a_{21}, a_{22}, \ldots$. It is not altered by the subroutine.

X is a REAL (DOUBLE PRECISION in the D version) array that must be set to contain the vector x. It is not altered by the subroutine.

Y is a REAL (DOUBLE PRECISION in the D version) array that must be set to contain the vector y and is overwritten by the result.

TRANS is a LOGICAL variable which should be set to .TRUE. if $y + A^T x$ is required and to .FALSE. if $y + Ax$ is required. It is not altered by the subroutine.

IRN, IP are INTEGER arrays used to describe the sparsity structure of A and must be set by the user. The nonzeros are stored by columns and IP(J) must point to the first nonzero of the J-th column, unless this column is null in which case IP(J) must equal IP(J+1); IP(N+1) must equal the number of nonzeros. IRN(K) must hold the row number of the K-th nonzero. IP has dimension $n+1$ and IRN has dimension equal to the number of nonzeros in A.

3 GENERAL INFORMATION

Use of common: None.

Other routines called directly: None.

Input/output: None.

Workspace: None.
5 EXAMPLE OF USE

The following code reads the entries of a sparse matrix (in any order) and the vectors \(x \) and \(y \). The matrix is then sorted, MC09 is called, and the result is printed.

```fortran
REAL A(1000),X(100),Y(100)
INTEGER IRN(1000),ICN(1000),IP(101)
C READ ORDER AND NUMBER OF NONZEROS
READ(5,*) N,NZ
C CHECK THAT N AND NZ ARE WITHIN BOUNDS
IF(N.LE.0.OR.N.GT.100) GO TO 40
IF(NZ.LE.0.OR.NZ.GT.1000) GO TO 40
C READ MATRIX NONZEROS AND VECTORS
READ(5,*) (IRN(I),ICN(I),A(I),I=1,NZ),(X(I),I=1,N),(Y(I),I=1,N)
C SORT THE MATRIX NONZEROS BY COLUMNS
CALL MC20A(N,NZ,A,IRN,IP,ICN,0)
IP(N+1)=NZ+1
C FORM PRODUCT
CALL MC09A(N,N,A,X,Y,.FALSE.,IRN,IP)
C WRITE PRODUCT
WRITE(6,10)(Y(I),I=1,N)
10 FORMAT(© PRODUCT IS ©/5F10.5)
40 STOP
END
```

For the data

\[
A = \begin{pmatrix}
1 & 0 & 0 & 4 \\
0 & 6 & 0 & 8 \\
9 & 0 & 11 & 0 \\
0 & 14 & 0 & 16
\end{pmatrix},
\quad
x = \begin{pmatrix}
1 \\
2 \\
3 \\
4
\end{pmatrix},
\quad
y = \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}
\]

we could have as input

\[
\begin{align*}
4 & \quad 8 \\
4 & \quad 4 \quad 16.
\end{align*}
\]

and we would get the following output

```
PRODUCT IS
17.00000 44.00000 42.00000 92.00000
```