1 SUMMARY

Appends an \(n+1 \) vector to an \(n \times n \) triangular matrix to form an \((n+1) \times (n+1) \) triangular matrix, i.e. given an upper triangular matrix \(U = \{u_{ij}\}_{n \times n} \) and a vector \(\mu = \mu_1, \mu_2, \ldots, \mu_n \), this subroutine forms the triangular matrix

\[
\tilde{U} = \begin{pmatrix}
U \\
\vdots \\
0 & \mu
\end{pmatrix}
\]

Both \(\tilde{U} \) and \(U \) are stored in compact form.

2 HOW TO USE THE PACKAGE

2.1 The argument list

The single precision version

\[
\text{CALL MC16A}(A,N,\text{COL})
\]

The double precision version

\[
\text{CALL MC16AD}(A,N,\text{COL})
\]

\(A \) is a REAL (DOUBLE PRECISION in the D version) one dimensional array of length at least \((n+1)(n+2)/2 \), whose first \(n(n+1)/2 \) elements represent \(U \). It is convenient to use the notation \(d_1, l_{21}, l_{31}, \ldots, l_{n1}, d_2, l_{32}, \ldots, l_{n2}, \ldots, d_n \) for these elements, to let \(D \) be the diagonal matrix whose diagonal elements are \(d_1, d_2, \ldots, d_n \), and to let \(L \) be the lower triangular matrix with ones on the diagonal whose other non-zero elements are \(l_{ij} \) \((i \geq j) \). Then \(D \) and \(L \) are related to \(U \) by the equation \(U' = LDL' \). On exit from the subroutine the first \((n+1)(n+2)/2 \) elements of \(\lambda \) represent the required upper triangular matrix, in the \(\text{D-L} \) form that is used for input.

\(N \) is an INTEGER that is initially set to the dimension of \(U \). The subroutine increases its value by one to correspond to the dimension of the new matrix. Restriction: \(n>0 \).

\(\text{COL} \) is REAL (DOUBLE PRECISION in the D version) one dimensional array, whose first \(n+1 \) elements are the components of the vector that is appended to \(U \). It is unchanged by the subroutine.

3 GENERAL INFORMATION

Workspace: The total amount of work is a small multiple of \(n^3 \), due to shifting the information in the array \(A \).

Use of common: None.

Other routines called directly: None.

Input/output: Other.

Restrictions: \(n>0 \). There is no upper bound on the value of \(n \).