1 SUMMARY
To delete a column from an \(n \times n \) triangular matrix to get \(V = \{ v_j \}_{j=0}^{n-1} \) and return a related triangular matrix \(U = \{ u_{ji} \}_{i=1}^{n} \) such that \(U^T U = V^T V \).

Both the original matrix and \(U \) are stored in a compact form.

2 HOW TO USE THE PACKAGE
2.1 The argument list
The single precision version

\[
\text{CALL MC17A}(A,N,I,W)
\]

The double precision version

\[
\text{CALL MC17AD}(A,N,I,W)
\]

\(A \) is a REAL (DOUBLE PRECISION in the D version) array of length at least \(n(n+1)/2 \), whose elements must be set by the user to the elements of \(U \). It is convenient to use the notation \(d_1, l_{21}, l_{31}, \ldots, l_{n1}, d_2, l_{32}, \ldots, d_n \) for these elements, to let \(D \) be the diagonal matrix whose diagonal elements are \(d_1, d_2, \ldots, d_n \), and to let \(L \) be the lower triangular matrix with ones on the diagonal whose other non-zero elements are \(l_{ij} \) \((i \geq j)\). Then \(D \) and \(L \) are related to \(U \) by the equation \(U^T U = LDL^T \). On exit from the subroutine the first \(n(n-1)/2 \) elements of \(A \) represent the required upper triangular matrix, in the \(D-L \) form that is used for input.

\(N \) is an INTEGER variable which must be set by the user to a positive integer that is the dimension of \(U \). The subroutine decreases its value by one to the dimension of the new matrix, unless the chosen column number \(i \) fails to satisfy the condition \(1 \leq i \leq n \).

\(I \) is an INTEGER variable which must be set by the user to the number of the column to be removed from the original matrix. It is unchanged by the subroutine.

\(W \) is a REAL (DOUBLE PRECISION in the D version) array whose first \(n-1 \) components are used for working space.

3 GENERAL INFORMATION
Workspace: The total amount of work is bounded by a multiple of \(n^2 \), and depends on the position of the selected column \(i \), there being less calculation when \(i \) is closer to \(n \).

Use of common: None.

Other routines called directly: MC11A/AD.

Input/output: None.

Restrictions: There is no upper bound on the value of \(n \).