1 SUMMARY

To integrate a cubic spline \(S(x) \) between limits which are knot points, i.e. given knots \(\xi_i \), function values \(S_i = S(\xi_i) \) and derivative values \(g_i = S'(\xi_i) \), \(i=1,2,...,n \) \((n \geq 2) \) evaluates the integral

\[
\int_{\xi_j}^{\xi_k} S(x) \, dx
\]

where \(\xi_j \) and \(\xi_k \) are two knot points of \(S(x) \).

ATTRIBUTES — **Version**: 1.0.0. **Remark**: see QG02 for when the limits are not knot points. **Types**: QG01A; QG01AD. **Original date**: March 1974. **Origin**: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list and calling sequence

The single precision version

\[Q = \text{QG01A}(J, K, N, XI, S, G) \]

The double precision version

\[
\text{DOUBLE PRECISION } Q \\
Q = \text{QG01AD}(J, K, N, XI, S, G)
\]

The arguments

\(J \) is an INTEGER variable which must be set by the user to specify which knot point is to be used as the lower limit of the integration. See next argument.

\(K \) is an INTEGER variable which must be set by the user to specify which knot point is to be used as the upper limit of the integration.

If either \(J \) or \(K \) is outside the range of 1 to \(n \) the integral is evaluated on the assumption that \(S(x) = 0 \) for \(x < \xi_1 \) or \(x > \xi_n \). If \(J > K \) the sign of the integral is reversed.

\(N \) is an INTEGER variable which must be set by the user to \(n \) the number of knot points. **Restriction**: \(n \geq 2 \).

\(XI \) is a REAL (DOUBLE PRECISION in the D version) array of length at least \(n \) which must be set by the user to the knot values \(\xi_i \), \(i=1,2,...,n \). The knots must be ordered so that \(\xi_1 \leq \xi_2 \leq ... \leq \xi_n \).

\(S \) is a REAL (DOUBLE PRECISION in the D version) array of length at least \(n \) which must be set by the user to the spline values \(S_i = S(\xi_i) \), \(i=1,2,...,n \).

\(G \) is a REAL (DOUBLE PRECISION in the D version) array of length at least \(n \) which must be set by the user to the first derivative values of the spline at the knots, i.e. set to \(g_i = S'(\xi_i) \), \(i=1,2,...,n \).

Function value

QG01A and QG01AD are Fortran FUNCTION subroutines and will be set to the value of the integral on return.
3 GENERAL INFORMATION

Use of common: none.
Workspace: none.
Other routines called directly: none.
Input/output: none.
Restrictions: \(n \geq 2, \xi_1 \leq \xi_2 \leq \ldots \leq \xi_n \).

4 METHOD

Let the knots be
\[\xi_i, \quad i = 1, 2, \ldots, n, \]
the spline values be
\[S_i = S(\xi_i), \quad i = 1, 2, \ldots, n, \]
and the first derivative values be
\[g_i = \frac{dS(x)}{dx} \bigg|_{x=\xi_i}, \quad i = 1, 2, \ldots, n; \]
then the integration over one knot interval, the \(i \)-th say, is simply
\[Q_i = \frac{h}{2} \{ S_{i+1} + S_i \} - \frac{h^2}{12} \{ g_{i+1} - g_i \} \]
where \(h = \xi_{i+1} - \xi_i \).

The integral over \(\xi_j \) to \(\xi_k \) is obtained by accumulating the integrals over the knot intervals in \(j \) to \(k \). The subroutine first makes sure that \(j \) and \(k \) are sensible.