1 SUMMARY

To integrate a cubic spline \(S(x) \) between limits \(a \) and \(b \) which need not be knot points, i.e. given knots \(\xi_i \), function values \(S_i = S(\xi_i) \) and derivative values \(g_i = S'(\xi_i) \), \(i = 1, 2, ..., n \) \((n \geq 2) \) evaluates the integral

\[
\int_a^b S(x) \, dx
\]

where \(S(x) \) is defined as zero outside the range of its knots.

2 HOW TO USE THE PACKAGE

2.1 Argument list and calling sequence

The single precision version

\[Q = \text{QG02A}(A, B, N, XI, S, G) \]

The double precision version

\[\text{DOUBLE PRECISION } Q \]
\[Q = \text{QG02AD}(A, B, N, XI, S, G) \]

The arguments

\[A \] is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to \(a \) the lower limit of the integration. See next argument.

\[B \] is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to \(b \) the upper limit of the integration.

If either \(A \) or \(B \) is outside the range of \(\xi_1 \) to \(\xi_n \) the integral is evaluated on the assumption that \(S(x) = 0 \) for \(x < \xi_1 \) or \(x > \xi_n \). If \(a > b \) the sign of the integral is reversed.

\[N \] is an INTEGER variable which must be set by the user to \(n \) the number of knot points. Restriction: \(n \geq 2 \).

\[XI \] is a REAL (DOUBLE PRECISION in the D version) array of length at least \(n \) which must be set by the user to the knot values \(\xi_i \), \(i = 1, 2, ..., n \). The knots must be ordered and distinct so that \(\xi_1 < \xi_2 < ... < \xi_n \).

\[S \] is a REAL (DOUBLE PRECISION in the D version) array of length at least \(n \) which must be set by the user to the spline values \(S_i = S(\xi_i) \), \(i = 1, 2, ..., n \).

\[G \] is a REAL (DOUBLE PRECISION in the D version) array of length at least \(n \) which must be set by the user to the first derivative values of the spline at the knots, i.e. set to \(g_i = S'(\xi_i) \) \(i = 1, 2, ..., n \).

Function value

QG02A and QG02AD are Fortran FUNCTION subroutines and will be set to the value of the integral on return.
3 GENERAL INFORMATION

Use of common: references the common block TG02B/BD associated with TG02A/AD.

Workspace: none.

Other routines called directly: TG02A/AD and QG01A/AD.

Input/output: none.

Restrictions: \(n \geq 2, \xi_{i} < \xi_{2} < \ldots < \xi_{n} \).

4 METHOD

The subroutine first makes sure that the limits \(a \) and \(b \) are sensible, then calls TG02 to obtain values and first derivative values at \(a \) and \(b \). It then calls QG01 to obtain the integral over any complete range of knots within \((a,b)\) and finally adds in the contributions from the two ends.