1 SUMMARY

To evaluate the central differences of a function tabulated at equal intervals. The function values must be passed to the subroutine in an array. The user specifies the order of the highest order differences required and may direct the subroutine to return the difference table in various compact forms. No printing is done.

2 HOW TO USE THE PACKAGE

2.1 Notation

Explanation is facilitated by means of the following table of divided differences of a function $y(x)$:

$$
\begin{array}{c}
\delta y_0 \\
\delta y_1 \\
\delta y_2 \\
\vdots \\
\delta y_n
\end{array}
\begin{array}{c}
\delta^2 y_1 \\
\delta^2 y_2 \\
\vdots \\
\delta^2 y_{n-1}
\end{array}
\begin{array}{c}
\delta^3 y_2 \\
\delta^3 y_3 \\
\vdots \\
\delta^3 y_{n-2}
\end{array}
\begin{array}{c}
\delta^4 y_3 \\
\vdots \\
\delta^{2n-2} y_{n-1}
\end{array}
$$

where the odd terms are defined by

$$
\delta^{2j+1} y_{i+1} = \delta^j y_{i+1} - \delta^j y_i
$$

and the even terms are defined by

$$
\delta^{2j} y_i = \delta^{2j-1} y_{i+1} - \delta^{2j-1} y_{i-1}
$$

2.2 Argument list and calling sequence

The single precision version

CALL TA03A(Y, IY, NL, NS, NU, NDIFF, IOPT)

The double precision version

CALL TA03AD(Y, IY, NL, NS, NU, NDIFF, IOPT)

Y is a two-dimensional REAL (DOUBLE PRECISION in the D version) array of first dimension IY in which the user must put the tabulated values of the function y and on return will also contain the table of divided differences. The values of $y_0, y_1, y_2, ..., y_n$ must be stored in the first column of Y in the positions Y(NL, 1), Y(NL+NS, 1), Y(NL+2*NS, 1), up to Y(NU, 1). There are several possible storage arrangements for the differences depending on the choice of arguments IOPT and NS; these are described more fully in §2.2.

IY is an INTEGER variable which must be set by the user to the first dimension of the two-dimensional array Y.

NL is an INTEGER variable which must be set by the user to specify where the beginning of the table is in the array Y, i.e. y_0 is stored in Y(NL, 1).

NS is an INTEGER variable which must be set by the user to specify the spacing of the members of the table in the
array \(Y \), i.e. \(y_i \) is stored in \(Y(NL+NS,1) \), \(y_2 \) in \(Y(NL+2\times NS,1) \), and so on. If both odd and even differences are required \(NS \) must be at least two but if only one or the other is required storage can be saved by reducing \(NS \) to one.

\(NU \) is an \texttt{INTEGER} variable which must be set by the user to specify where the end of the table comes in the array \(Y \), i.e. \(y_n \) is stored in \(Y(NU,1) \). \textbf{Restriction:} \(NU \geq NL \).

\(NDIFF \) is an \texttt{INTEGER} variable which must be set by the user to the order of the highest order differences required in the table. \textbf{Restriction:} \(NDIFF \geq 0 \).

\(IOPT \) is an \texttt{INTEGER} variable which must be set by the user to select one of three storage arrangements for the differences returned in the array \(Y \). The storage arrangements and the choices for \(IOPT \) and \(NS \) are described in §2.2.

\subsection*{2.2 The storage arrangements for the differences}

The user is given the option of having the differences returned in the array \(Y \) in a variety of arrangements including: a simple arrangement, more compacted arrangements and arrangements where either the odd or the even differences are omitted to save on storage. The choice of arrangement is controlled by the argument \(IOPT \) and the spacing argument \(NS \).

The simplest arrangement, \(IOPT=0 \) and \(NS=2 \), is illustrated by the following diagram.

\[
\begin{array}{c|c|c}
 y_{i-1} & \delta^2 y_{i-1} & \delta^3 y_{i-1} \\
 \delta y_{i-1} & \delta y_{i-1} & \delta y_{i-1} \\
 y_i & \delta^2 y_i & \delta^3 y_i \\
 \delta y_i & \delta y_i & \delta y_i \\
 y_{i+1} & \delta^2 y_{i+1} & \delta^3 y_{i+1} \\
\end{array}
\]

A more compact scheme, \(IOPT=1 \) and \(NS=2 \), which closes up the differences and hence requires less storage is the following

\[
\begin{array}{c|c|c|c}
 y_{i-1} & \delta^2 y_{i-1} & \delta^3 y_{i-1} & \delta^4 y_{i-1} \\
 \delta y_{i-1} & \delta^2 y_{i-1} & \delta^3 y_{i-1} & \delta^4 y_{i-1} \\
 y_i & \delta^2 y_i & \delta^3 y_i & \delta^4 y_i \\
 \delta y_i & \delta^2 y_i & \delta^3 y_i & \delta^4 y_i \\
 y_{i+1} & \delta^2 y_{i+1} & \delta^3 y_{i+1} & \delta^4 y_{i+1} \\
\end{array}
\]

The third arrangement, \(IOPT=2 \) and \(NS=2 \), also compacts the differences but differs slightly from the previous arrangement.
The three schemes illustrated are all for the case when \(NS=2 \). More storage may be saved by setting \(NS=1 \) and closing up the rows, and in two of the cases this means omitting either all odd order differences or all even differences (except order zero). Thus setting \(NS=1 \) the three values of \(IOPT \) will give

0 the \(i \)-th row will contain \(y_i, \delta^i y_i, \delta^i y_{i+1}, \) etc.
1 even differences will overwrite odd differences so that the \(i \)-th row will contain \(y_i, \delta^i y_i, \delta^i y_{i+1}, \) etc.
2 the odd differences will overwrite the even differences so that the \(i \)-th row will contain \(y_i, \delta^i y_i, \delta^i y_{i+1}, \) etc.

The second dimension of the array \(Y \), \(MY \) say, must be large enough to accommodate the table of differences and the minimum possible value for \(MY \) varies with the setting of \(IOPT \) as follows

0 \(MY \geq NDIFF+1 \).
1 \(MY \geq (NDIFF+3)/2 \).
2 \(MY \geq (NDIFF+4)/2 \)

Note that \(NS \) must be greater than or equal to one. If \(NS>2 \) there will be empty rows and the row indexes of the rows shown in the examples would be \(I-NS, I-NS/2, I, I+NS-NS/2, I+NS \).

3 GENERAL INFORMATION

Use of common: none.

Workspace: none.

Other routines called directly: none.

Input/output: none.

Restrictions: \(NS \geq 1, NU \geq NL, NDIFF \geq 0, IOPT \) must be 0, 1 or 2.