1 SUMMARY

Calculates the coefficients of the piece-wise cubic function which interpolates \(n \) given function values \(f_i \) at points \(x_i, i=1, 2, ..., n \).

The interpolation function derived will be continuous and have continuous first derivatives. If the function values lie on a quadratic polynomial, this will be represented exactly. The subroutine returns the coefficients of the \(n-1 \) cubics \(C_i(\theta) \) corresponding to the \(n-1 \) intervals \(x_i \) to \(x_{i+1} \) in the transformed variables

\[
\theta = \frac{x-x_i}{x_{i+1}-x_i}, \quad \text{i.e.} \quad C_i(\theta) = a_1 + a_2 \theta + a_3 \theta^2 + a_4 \theta^3 \quad 0 \leq \theta \leq 1
\]

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version

\[
\text{CALL TB03A}(N,F,X,A)
\]

The double precision version

\[
\text{CALL TB03AD}(N,F,X,A)
\]

\(N \) is an INTEGER variable which must be set by the user to \(n \), the number of function values passed in the array \(F \). \(N \) is not altered by the subroutine. **Restriction**: \(n \geq 4 \).

\(F \) is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the function values \(f_i, i=1, 2, ..., n \). \(F \) is not altered by the subroutine.

\(X \) is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the values of the points \(x_i, i=1, 2, ..., n \). \(X \) is not altered by the subroutine. **Restriction**: the points must be ordered and distinct, i.e. \(x_1 \prec x_2 \prec ... \prec x_n \).

\(A \) is a two-dimensional REAL (DOUBLE PRECISION in the D version) array of first dimension 4 and second dimension at least \(n-1 \), which is set by the subroutine to the coefficients of the cubics for the \(n-1 \) intervals. In the interval \(x_i \) to \(x_{i+1} \) the function is represented by the cubic

\[
C_i(\theta) = a_{i_j} + a_{i_2} \theta + a_{i_3} \theta^2 + a_{i_4} \theta^3
\]

which is a good approximation to \(f((1-\theta)x_i + \theta x_{i+1}) \). The values of \(a_{i_j}, j=1, 2, 3, 4 \) and \(i=1, 2, ..., n-1 \) are returned in \(A(J, I) , J=1, 4 \) and \(I=1, N-1 \).

Note that the values of \(f_i \) and \(f_{i+1} \) are given by substituting \(\theta=0 \) and \(\theta=1 \) respectively, and values for \(x \) between \(x_i \) and \(x_{i+1} \) are given by values of \(\theta \) between 0 and 1.
3 GENERAL INFORMATION

Use of common: None.
Workspace: None.
Other routines called directly: None.
Input/output: None.
Restrictions: None.