
HSL EA20
PACKAGE SPECIFICATION HSL

1 SUMMARY

HSL EA20 is a suite of Fortran 95 procedures for computing the product of the s-root of a sparse self-adjoint positive
definite matrix by a vector using a scalar product derived by a second symmetric positive definite matrix. Given two
n×n symmetric positive definite matrices A and M, and a vector u, the package uses the Lanczos method, applied to
the matrix pencil (M,A), to approximate (

M−1A
)s u, s ∈ (−1,1). (1.1)

Reverse communication is used. Control is returned to the user for the products of A with a vector z, of M with a
vector x, or of M−1 with a vector w.

ATTRIBUTES — Version: 1.1.0 (18 July 2013) Types: Real, Double. Calls: DOT, PTEQR, GEMV. Original date:
July 2010. Origin: M. Arioli, Rutherford Appleton Laboratory. Language: Fortran 95.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

Access to the package requires a USE statement such as

Single precision version
USE HSL EA20 single

Double precision version
USE HSL EA20 double

If it is required to use both modules at the same time, the derived types (Section 2.3) and the subroutine (Section 2.2)
must be renamed on one of the USE statements.

2.2 Argument lists and calling sequences

There is one procedure that the user may call:

• EA20 uses the Lanczos method to approximate (M−1A)su. The subroutine uses a reverse communication mech-
anism for matrix-vector products.

2.3 The derived data types

For each problem, the user must employ the derived types defined by the module to declare scalars of the types
EA20 control, EA20 info, and EA20 reverse. The following pseudocode illustrates this.

use HSL_EA20_double
...
type (EA20_control) :: control
type (EA20_info) :: info
type (EA20_reverse) :: reverse

The components of EA20 reverse are private and are used for communication between calls during the reverse
communication process.
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2.3.1 The reverse communication subroutine

The reverse communication subroutine is called as follows:

CALL EA20(n,u,s,ido,w,control,info,reverse)

n is a scalar of type INTEGER that must hold the order of A and M. Restriction: data%n≥1.

u is an array of type REAL (double precision in HSL EA20 double) and size at least data%n. On input, u must be
allocated ans holds the vector to which we want to apply the s-root of M−1A. On exit, u contains the result.
Restriction: size(data%u)≥data%n.

s is a scalar of type REAL (double precision in HSL EA20 double) that must hold the value of the s-root desired,
Restriction: −1 < data%s < 1.

ido is a scalar of type INTEGER that must be initially set by the user to -1. On exit from EA20 main, it is set to a value
that informs about which operation is required. Its values are 1, 2, 3. Depending on the value of info%ido
the user must supply

info%ido = 1 matrix A by vector w(:,1) (w(:,2) = Aw(:,1));

info%ido = 2 matrix M by vector w(:,1) (w(:,2) = Mw(:,1));

info%ido = 3 inverse of M by vector w(:,1) (w(:,2) = M−1w(:,1)).

w is an array of type REAL (double precision in HSL EA20 double) and dimensions (n,2) that is used as working
space: w(:,1) holds the input for the matrix by vector or the inverse of M by vector that the user must supply
following ido; w(:,2) holds the answers of the operation required by ido on w(:,1). The user does not need
to allocate it.

control is a scalar INTENT(IN)argument of type EA20 control that contains the control parameters. (see Sec-
tion 2.3.2).

info is a scalar INTENT(OUT) argument of type EA20 info. Its components provide information about the execution
of the subroutine, as explained in Section 2.3.3.

reverse is a scalar INTENT(INOUT) argument of type (EA20 reverse) It is used to hold data about the internal
status of the variables and must be passed unchanged during the reverse communication process.

2.3.2 The derived data type for holding control parameters

The derived data type EA20 control is used to hold controlling data. The components, which are automatically given
default values in the definition of the type, are:

Printing controls

diagnostics level is a scalar of type INTEGER that is used to control the level of diagnostic printing. The different
levels are:

< 0 No printing.

= 0 Error and warning messages only.

>= 1 As 0, plus some additional diagnostic printing.

The default is diagnostics level=0.
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unit diagnostics is a scalar of type INTEGER that holds the unit number for diagnostic printing. Printing is sup-
pressed if unit diagnostics< 0. The default is unit diagnostics=6.

unit error is a scalar of type INTEGER that holds the unit number for error messages. Printing of error messages is
suppressed if unit error< 0. The default is unit error=6.

unit warning is a scalar of type INTEGER that holds the unit number for warning messages. Printing of warning
messages is suppressed if unit warning< 0. The default is unit warning=6.

Other controls

tol is a scalar of type REAL (double precision in HSL EA20 double) that holds the relative accuracy on the norm of
the error between step i and i+d where d is a parameter fixed by the user (see next item d). Restriction: 0 <
control%tol < 1.

d is a scalar of type INTEGER that holds the delay parameter. Restriction: control%d≥1.

maxit is a scalar of type INTEGER that holds the maximum number of Lanczos iterations allowed. Restriction:
control%maxit≥1.

2.3.3 The derived info type for holding information

The derived data type EA20 info is used to hold parameters that give information about the progress and needs of the
algorithm. The components of EA20 info (in alphabetical order) are:

flag is a scalar of type INTEGER that gives the exit status of the algorithm (details in Section 2.4).

conv is a scalar of type LOGICAL that informs if the convergence is achieved. If conv = .true. then a reasonable
approximation is achieved, otherwise the result hold in data%u could be inaccurate.

error is a scalar of type REAL (double precision in HSL EA20 double) that holds the error estimate (see Section 4.2).

2.3.4 The derived reverse type for holding information during reverse communication

The derived data type EA20 reverse is used to hold the parameters that must be saved during reverse communication.
The user must not modify it and does not need to be set.

2.4 Warning and error messages

If info%flag has zero value on output, the code did not detect any error. Otherwise, a negative value indicates one of
the following errors:

-1 data%n ≤ 0;

-2 size(data%u) ≤ data%n

-3 failure in allocating w.

-4 failure in allocating reverse%v the space necessary to store the Lanczos vectors. If control%diagnostic level
> 0 additional diagnostics are printed.

-5 failure in allocating internal workspace in EA20 İf control%diagnostic level > 0 additional diagnostics are
printed.
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-6 failure in allocating the vectors storing the information of the tridiagonal matrix and of the working vectors used
by LAPACK routine PTEQR. info%LAP holds the original error messages given by PTEQR.

-7 M is not positive definite.

-8 error in PTEQR suggesting that A is not positive definite. If control%diagnostic level > 0 additional diag-
nostics are printed. info%LAP holds the original error messages given by PTEQR.

-9 error in the deallocation. .

-10 data%tol ≤ 0 or data%tol≥ 1.

-11 data%d ≤ 0.

-12 data%s≤−1 or data%s≥ 1.

A positive value of info%flag gives the following warning message:

1 Lanczos convergence is slow; the result may not be accurate.

3 GENERAL INFORMATION

Workspace: HSL EA20 handles its own memory allocations. BLAS routines DOT, GEMV. LAPACK routines PTEQR

Input/output: Output is provided under the control of control%diagnostics level, which allows error, warning
and diagnostics messages to be printed on units control%unit error, control%unit warning and
control%unit diagnostics, respectively.

Restrictions: data%n≥1, contrl%maxit > 0, data%d ≥ 1, 0 <data%tol< 1, −1 <data%s< 11.

Portability: Fortran 95, plus allocatable components of derived types.

4 METHOD

4.1 Algorithms for the matrix EA20

Given a pair of symmetric and positive-definite matrices (M,A), the generalised Lanczos algorithm constructs a set of
M-orthogonal vectors vi such that

AVk = MVkTk +βk+1Mvk+1eT
k , VT

k MVk = Ik

where the columns vi of Vk = [v1,v2 . . . ,vk] are known as the Lanczos vectors and Ik ∈ Rk×k is the identity matrix
with kth column denoted by ek, while the matrix Tk ∈ Rk×k is a symmetric and tridiagonal matrix [2]. The standard
algorithm corresponds to the case M = I. Note that Tk can be seen as a projection of A onto the space spanned by the
M-orthogonal columns of Vk

VT
k AVk = Tk, VT

k MVk = Ik. (4.1)

In exact arithmetic, when k = n, the algorithm can be seen as providing simultaneous factorisations of the matrix pair
(M,A) as

A = V−T
n TnV−1

n , M = V−T
n V−1

n .

We can immediately derive that:
(M−1A)s =

(
VTsVT ) , (4.2)

and
(M−1A)−s =

(
VT−sVT ) . (4.3)
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4.2 Sparse evaluation of (M−1A)sz

The complexity of the full (k = n) generalised Lanczos algorithm is in general O(n3). However, in many applications
of interest we do not need to compute (M−1A)s, but simply apply it (or its inverse) to a given vector z ∈ Rn. In such
cases, a truncated version of the algorithm is used in practice with only k Lanczos vectors being constructed. As we
are interested in approximations of (M−1A)sz we note first that if we start the Lanczos process with v = z then

VT
k Mz = e1‖z‖M (4.4)

where e1 ∈ Rk is the first column of the identity Ik. This leads us to consider the following approximations of the
matrix-vector products:

(M−1A)sz≈ VkTs
ke1‖z‖M.

Similarly, if we wish to apply the inverse of (M−1A)s to a given vector z we first note that if we start the iteration
with v = M−1z then

VT
k z = VT

k M(M)−1z = e1‖M−1z‖M = e1‖z‖M−1 .

This leads us to consider the following approximations

(M−1A)−sz≈ VkT−s
k VT

k z = VkT−s
k e1‖z‖M−1 .

The complexity of the above operations depends on the complexity corresponding to the application of the inverse
of M. If this operation can be achieved in O(n) operations, then the overall complexity of computing (M−1A)sz, or
(M−1A)−sz is of order O(kn) for k� n, with storage requirements of the same order. We point out that (M−1A)−sz
can be also computed inverting the matrices M and A and applying the Lanczos algorithm as before. The tridiagonal
matrix T̃k that we will obtain will be a different approximation of the inverse of T . Several applications of the algorithm
are discussed in [1].

4.3 Stopping criterion

The scalar product
(z,(M−1A)sz)M (4.5)

is always non negative and it is equal to if and only if z = 0, owing to the self-adjoint property and positive definiteness
of the matrix M−1A respect the M-scalar product. Taking into account (4.4), we have that

(z,(M−1A)sz)M = eT
1 Tse1||z||2M.

The sequence of the approximations
eT

1 Ts
ke1→ eT

1 Tse1

for k→ n. Let ε ∈ (0,1) be a threshold fixed a priori (data%tol = ε). The stopping criterion

i f |eT
1 Tse1− eT

1 Ts
ke1| ≤ εeT

1 Tse1 then stop (4.6)

will ideally check that the actual approximation at the k-step of the Lanczos process is a good approximation. We
substitute in the code the unknown value eT

1 Tse1 with eT
1 Ts

k+de1, where d (data%d) is a small integer ( in [1] a small
value of k and d are enough to give a good approximation in the case of elliptic differential problems). Therefore, the
practical stopping criterion used in the code is

i f |eT
1 Ts

k+de1− eT
1 Ts

ke1| ≤ ε eT
1 Ts

k+de1 then stop, (4.7)

i.e. we stop when we do not see any improvement in the norm after d additional steps. We point out that given the
spectral decomposition of Tk

Tk = ST
k ∆kSk
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we have that
eT

1 Ts
ke1 = ∑

j
(δk)

s
j(Sk)

2
1, j.

Finally, we advise the user that d = 3 is a reasonable choice. Moreover, if A and M are respectively the stiffness and
the mass matrices of a finite-element approximation of differential operators the tolerance value ε can be of the order
of the maximum diameter of the elements in the mesh [1]
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5 EXAMPLE OF USE

Suppose we wish to compute (M−1A)1/2u , where

M = I, A =
1
9



2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2


, u =



0
1
1
1
1
1
1
1
1
0


. (5.1)

The following program uses EA20 to compute the result.

program main

! Simple code to illustrate row entry to hsl_ea20
use HSL_EA20_double
implicit none

! Derived types
type (ea20_control) :: cntl
type (ea20_info) :: info
type (ea20_reverse) :: rev

! Parameters

integer, parameter :: wp = kind(0.0d0)
integer, parameter :: n = 10
double precision, parameter :: zero = 0.0d0, one = 1.0d0, two = 2.0d0

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL EA20 v1.1.0
Documentation date: May 30, 2023



HSL HSL EA20

integer :: i,ido
double precision, dimension(n) :: u
double precision, allocatable :: w(:,:)
double precision :: s

!! set u
u = 0.d0
u(2:n-1) = one

!! set data
s = 0.5d0

!! set cntl
cntl%d = 3 !! delay
cntl%tol = 1.d-2 !! convergece tolerance
cntl%maxit = 10 !! max number iteration

cntl%diagnostics_level = 1 !! full error check

ido = -1

do while ( ido .ne. 0 .and. info%flag == 0)

call EA20(n,u,s,ido,w,cntl,info,rev)

select case ( ido )

case (0)
exit

case (1) !! Matrix-Vector product w_out = A w(:,1)
w(1,2) = two*w(1,1) - w(2,1)
do i=2,n-1

w(i,2) = -w(i-1,1)+two*w(i,1)-w(i+1,1)
end do
w(n,2) = -w(n-1,1)+two*w(n,1)

case (2) !! Matrix-Vector product w(:,2) = M w(:,1)
w(:,2) = w(:,1)

case (3) !! Matrix-Vector product w_out = inv(M) w(:,1)
w(:,2) = w(:,1)

end select

end do
! end if

if (info%flag .ge. 0) then
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write(*,’(a,i5)’) ’error code = ’,info%flag
!! print the final solution
write(*,’(a,i5)’) ’number of iterations = ’,info%iter
write(*,’(a,1x,1pe14.2)’) ’estimated final error = ’,info%error
write(*,’(a)’) ’ i X(i)’
write(*,’(i5,1x,1pe14.7)’) (i,u(i), i=1,n)

end if

end program main

This produces the following output:

error code = 0
number of iterations = 6
estimated final error = 2.14E-03

i X(i)
1 -5.000E-01
2 7.469E-01
3 3.136E-01
4 2.297E-01
5 2.028E-01
6 2.028E-01
7 2.297E-01
8 3.136E-01
9 7.469E-01
10 -5.000E-01
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