
HSL MA97
PACKAGE SPECIFICATION HSL

1 SUMMARY

HSL MA97 solves one or more sets of n× n sparse symmetric equations AX = B using a multifrontal method. The
package covers the following cases:

1. A is positive definite. HSL MA97 computes the sparse Cholesky factorization

A = PL(PL)†

where L† = LT (real or complex symmetric) or L† = LH (complex Hermitian), P is a permutation matrix and L
is lower triangular.

2. A is indefinite. HSL MA97 computes the sparse factorization

A = PLD(PL)†

where L† = LT (real or complex symmetric) or L† = LH (complex Hermitian), P is a permutation matrix, L is
unit lower triangular, and D is block diagonal with blocks of size 1×1 and 2×2.

HSL MA97 is designed to produce bit-compatible solutions on any number of threads (see Sections 2.2 and 2.3).
That is to say, regardless of running in serial or parallel, it will always get the same answer (on the same machine with
the same binary).
An option exists to scale the matrix. In this case, the factorization of the scaled matrix A = SAS is computed, where S
is a diagonal scaling matrix.
For large problems where bit-compatible solutions are not required, HSL MA86 (or HSL MA87 for positive-definite
systems) may provide significantly better parallel performance. For problems where the factors are too large to fit
in memory, HSL MA77 should be used (this allows the matrix data and computed factors to be held in files). HSL MA77
may also be used for problems held in element form.

ATTRIBUTES — Version: 2.8.1 (1 November 2023) Interfaces: C, Fortran, MATLAB. Types: Real (single,
double), Complex (single, double). Uses: MC30, HSL MC34, HSL MC64, HSL MC68 (optionally using METIS version
4.x), HSL MC69, MC77, HSL MC78, HSL MC80, axpy, gemm, gemv, nrm2, potrf, swap, syrk, trmv, trmm,
trsm, trsv. Original date: November 2011. Origin: J.D. Hogg and J.A. Scott, Rutherford Appleton Laboratory.

Language: Fortran 95, plus allocatable dummy arguments and allocatable components of derived types. Parallelism:
OpenMP 3.0. Remark: The development of HSL MA97 was supported by the EPSRC grant EP/E053351/1.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

Access to the package requires a USE statement

Single precision version
use hsl ma97 single

Double precision version
use hsl ma97 double

Complex version
use hsl ma97 complex

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 1

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

Double complex version
use hsl ma97 double complex

If it is required to use more than one module at the same time then the derived types (Section 2.4) must be renamed in
one of the use statements.

The following procedures are available to the user:

• ma97 analyse accepts the matrix data in compressed sparse column format and optionally checks it for duplicates
and out-of-range entries. The user may supply an elimination order; otherwise one is generated. Using this
elimination order, ma97 analyse analyses the sparsity pattern of the matrix and prepares the data structures for
the factorization.

• ma97 analyse coord is an alternative to ma97 analyse that may be used if the user has the matrix data
held in coordinate format. Again, the user may supply an elimination order; otherwise one is generated.
ma97 analyse coord checks the matrix data for duplicates and out-of-range entries, stores it in compressed
sparse column format and then proceeds in the same way as ma97 analyse.

• ma97 factor uses the data structures set up by ma97 analyse to compute a sparse factorization. More than
one call to ma97 factor may follow a call to ma97 analyse (allowing more than one matrix with the same
sparsity pattern but different numerical values to be factorized without multiple calls to ma97 analyse). An
option exists to scale the matrix.

• ma97 factor solve may be called in place of ma97 factor to factorize A and, at the same time, solve the
system AX = B. Multiple calls to ma97 factor solve may follow a call to ma97 analyse.

• ma97 solve uses the computed factors generated by ma97 factor or ma97 factor solve to solve systems
AX = B for one or more right-hand sides B. Multiple calls to ma97 solve may follow a call to ma97 factor or
ma97 factor solve. An option is available to perform a partial solution.

• ma97 finalise should be called after all other calls are complete for a problem (including after an error return
that does not allow the computation to continue). It frees memory referenced by components of the derived data
types.

In addition, the following routines may be called:

• ma97 free may be called to free memory associated with akeep or fkeep when a call to ma97 finalise is
not appropriate (for example, if a further factorization is to be performed for a matrix with the same sparsity
pattern).

• ma97 enquire posdef may be called in the positive-definite case to obtain the pivots used.

• ma97 enquire indef may be called in the indefinite case to obtain the pivot sequence used by the factorization
and the entries of D−1.

• ma97 alter may be called in the indefinite case to alter the entries of D−1. Note that this means that PLD(PL)†

is no longer a factorization of A.

• ma97 solve fredholm is an alternative solve routine that may be called in the indefinite case when the matrix
A is found to be singular. It computes the same solution X as ma97 solve but, if the j−th system is inconsistent,
it also returns Yj that satisfies AY j = 0 and Yj

†B j 6= 0.

• ma97 lmultiply may be called to calculate a matrix-vector or matrix-matrix product with S−1PL or (S−1PL)†.

• ma97 sparse fwd solve uses the computed factors generated by ma97 factor or ma97 factor solve to solve
the triangular system PLX = SB for a single sparse right-hand side B. Multiple calls to ma97 sparse fwd solve
may follow a call to ma97 factor or ma97 factor solve.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 2

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

2.2 OpenMP

OpenMP is used by HSL MA97 to provide parallelism for shared memory environments. To run in parallel, OpenMP
must be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number
of threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

2.3 Achieving bit-compatibility

Care has been taken to allow bit-compatibility to be achieved using this solver. However, testing has revealed that this
feature is dependant on the BLAS library used.

In tests it was found that bit-compatibility was impossible to achieve with the GotoBLAS. For the Intel MKL,
bit-compatibility can be achieved by setting control%solve blas3=.true. (using dgemv rather than dgemm during
the backwards solve seems to trigger some form of bug). No problems were encountered using the ACML or ATLAS
BLAS libraries.

2.4 The derived data types

For each problem, the user must employ the derived types defined by the module to declare scalars of the types
ma97 control, ma97 info, ma97 akeep, and ma97 fkeep. The following pseudo-code illustrates this.

use hsl_ma97_double
...
type (ma97_control) :: control
type (ma97_info) :: info
type (ma97_akeep) :: akeep
type (ma97_fkeep) :: fkeep
...

The components of ma97 control and ma97 info are explained in Sections 2.7.1 and 2.7.2. The components of
ma97 akeep and ma97 fkeep are used to pass data between the subroutines of the package and must not be altered by
the user.

2.5 METIS

The HSL MA97 package optionally uses the METIS graph partitioning library available from the University of Minnesota
website. If METIS is not available, the user must link with the supplied dummy subroutine METIS NodeND. In this case,
the METIS ordering option will not be available to the user and, if selected, ma97 analyse and ma97 analyse coord
will return with an error.
Note that if HSL MA97 is to be run in parallel, it is recommended that either METIS is used or the user supplies an
elimination computed using a nested dissection-based algorithm.
Important: At present, HSL MA97 only supports METIS version 4, not the latest version 5 releases.

2.6 Argument lists and calling sequences

2.6.1 Optional arguments

We use square brackets [] to indicate OPTIONAL arguments. In each call, optional arguments follow the argument
info. Since we reserve the right to add additional optional arguments in future releases of the code, we strongly
recommend that all optional arguments be called by keyword, not by position.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

2.6.2 Integer, real and package types

INTEGER denotes default INTEGER and INTEGER(long) denotes INTEGER(kind=selected int kind(18)).
REAL denotes default real if the single precision version or the complex version is being used, and double precision
real if the double precision or double precision complex version is being used.
We use the term package type to mean default real if the single precision version is being used, double precision real
for the double precision version, default complex for the complex version and double precision complex for the double
complex version.

2.6.3 To analyse the sparsity pattern and prepare for the factorization: CSC format

If the matrix data is held in compressed sparse column (CSC) format, the analyse phase optionally checks the user’s
data for out-of-range and duplicate entries. Only the lower triangular part of the matrix A is required; any entries in
the upper triangular part are regarded as out of range. Entries on the diagonal that are zero do not need to be entered
explicitly. If checking is carried out, the cleaned matrix data (duplicates are summed during the factorization and
out-of-range entries discarded) is held within the ma97 akeep derived data type and the user data ptr and row is not
required by any of the remaining subroutines in the package. If the data is not checked, ptr and row must be passed
unchanged to the factorization routines. Note that in this case, the presence of out-of-range or duplicates may cause
this routine or any of the other routines in the package to fail in an unpredictable way.
A call of the following form should be made:

call ma97_analyse(check,n,ptr,row,akeep,control,info[,order,val])

check is an INTENT(IN) scalar of type LOGICAL. If set to .true. the matrix data is checked for errors and the cleaned
matrix (duplicates are summed and out-of-range entries discarded) is stored in akeep. Otherwise, no checking
of the matrix data is carried out and ptr and row must be passed unchanged to the factorization routines.

n is an INTENT(IN) scalar of type INTEGER that must hold the order of A. Restriction: n≥0.

ptr is an INTENT(IN) rank-1 array of type INTEGER and size n+1. ptr(j) must be set by the user so that ptr(j)
is the position in row of the first entry in column j and ptr(n+1) must be set to one more than the number of
matrix entries being input by the user.

row is an INTENT(IN) rank-1 array of type INTEGER. It must hold the row indices of the entries of the lower triangular
part of A with the row indices for the entries in column 1 preceding those for column 2, and so on (within each
column, the row indices may be in arbitrary order). If check is set to .false., row must contain no duplicates
or out-of-range entries (including no entries in the upper triangular part).

akeep is an INTENT(OUT) scalar of type ma97 akeep. It is used to hold data about the problem being solved and must
be passed unchanged to the other subroutines.

control is an INTENT(IN) scalar of type ma97 control (see Section 2.7.1).

info is an INTENT(OUT) scalar of type ma97 info. Its components provide information about the execution of the
subroutine, as explained in Section 2.7.2.

order is an optional INTENT(INOUT) rank-1 array of type INTEGER and size n. If control%ordering=0, order must
be present and order(i) must hold the position of variable i in the elimination order. If the user wants to suggest
a 2×2 pivot involving variables i and j, order(j) should be set to order(i)+1. If control%ordering≥1,
order need not be set on entry and the elimination order is computed within the analyse phase. On exit, order
contains the elimination order that ma97 factor or ma97 factor solve will be given (it is passed to these
routines as part of akeep); this order may give slightly more fill-in than the user-supplied order and, in the

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 4

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

indefinite case, may be modified by ma97 factor or ma97 factor solve to maintain numerical stability. Note
that, if the user intends to call ma97 sparse fwd solve, order must be present and must be passed unchanged
to ma97 sparse fwd solve.

val is an optional INTENT(IN) rank-1 array of package type. If present, val(k) must hold the value of the entry in
row(k). val must be present if a matching-based elimination ordering is required (control%ordering=7 or
8).

2.6.4 To analyse the sparsity pattern and prepare for the factorization: coordinate format

If the matrix data is held in coordinate format, entries in the upper and/or lower triangular part of A may be input using
a call of the following form:

call ma97_analyse_coord(n,ne,row,col,akeep,control,info[,order,val])

n is an INTENT(IN) scalar of type INTEGER that must hold the order of A. Restriction: n≥0.

ne is an INTENT(IN) scalar of type INTEGER that must hold the number of matrix entries being input by the user.
Restriction: ne≥1.

row and col are INTENT(IN) rank-1 arrays of type INTEGER and size ne. Each diagonal entry aii of A must be
represented by row(k)=i and col(k)=i and each pair of off-diagonal entries ai j and a ji must be represented
by row(k)=i and col(k)=j or by row(k)=j and col(k)=i. Duplicated entries are summed and out-of-range
entries are discarded.

akeep, control, info, order: see Section 2.6.3.

val is an optional INTENT(IN) rank-1 array of package type. If present, val(k) must hold the value of the entry in
row(k) and col(k). val must be present if a matching-based elimination ordering is required (control%ordering=7
or 8).

2.6.5 To factorize the matrix and optionally solve AX = B

To factorize the matrix, a call of the following form should be made:

call ma97_factor(matrix_type,val,akeep,fkeep,control,info[,scale,ptr,row])

If the user wishes to solve at the same time as factorizing the matrix, a call of the following form should be made for
a single right-hand side:

call ma97_factor_solve(matrix_type,val,x1,akeep,fkeep,control,info[,scale,ptr,row])

or, for more than one right-hand side,

call ma97_factor_solve(matrix_type,val,nrhs,x,ldx,akeep,fkeep,control,info[,scale,ptr,row])

matrix type is an INTENT(IN) scalar of type INTEGER that must be set as follows:

3 if A is real, symmetric positive definite

4 if A is real, symmetric indefinite

-3 if A is Hermitian, positive definite

-4 if A is Hermitian, indefinite

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 5

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

-5 if A is complex, symmetric indefinite

Restriction: matrix type = 3,4 (real case), matrix type = -3,-4,-5 (complex case).

val is an INTENT(IN) rank-1 array of package type. If ma97 analyse was called, val(k) must hold the value of the
entry in row(k). Otherwise, if ma97 analyse coord was called, val(k) must hold the value of the entry in
row(k) and col(k).

akeep is an INTENT(IN) scalar of type ma97 akeep that must be unchanged since the call to ma97 analyse or
ma97 analyse coord.

control, info: see Section 2.6.3.

fkeep is an INTENT(INOUT) scalar of type ma97 fkeep. It is used to hold data about the problem being solved and
must be passed unchanged to the other subroutines.

x1 is an INTENT(INOUT) rank-1 array of package type and size n. It must be set so that x1(i) holds the component
of the right-hand side for variable i. On exit, x1(i) holds the solution for variable i.

nrhs is an INTENT(IN) scalar of type INTEGER that holds the number of right-hand sides. Restriction: nrhs≥1.

x is an INTENT(INOUT) rank-2 array of package type with extents ldx and nrhs. It must be set so that x(i,j) holds
the component of the right-hand side for variable i to the jth system. On exit, x(i,j) holds the solution for
variable i to the jth system.

ldx is an INTENT(IN) scalar of type INTEGER that must be set to the first extent of the array x. Restriction: ldx≥n.

scale is an optional INTENT(INOUT) rank-1 array of type REAL and size n. If control%scaling>0, scaling is
performed and if scale is present, on exit it contains the diagonal entries of the scaling matrix S. If control%scaling≤0
and scale is not present, no scaling is performed; if control%scaling≤0 and scale is present, it must contain
the diagonal entries of the scaling matrix S and is unchanged on exit.

ptr and row are optional INTENT(IN) rank-1 arrays of type INTEGER. They are only accessed if ma97 analyse was
called with check set to .false.. In this case, they must both be present and must be unchanged since that call.

2.6.6 To solve linear systems using the computed factors

After the call to ma97 factor (or ma97 factor solve), one or more calls of the following form may be made to
solve AX = B. Partial solutions may be performed by appropriately setting the optional parameter job. For a single
right-hand side,

call ma97_solve(x1,akeep,fkeep,control,info[,job])

or, for more than one right-hand side,

call ma97_solve(nrhs,x,ldx,akeep,fkeep,control,info[,job])

x1, nrhs, x, ldx, akeep: see Section 2.6.5.

fkeep is an INTENT(IN) scalar of type ma97 fkeep that must be unchanged since the last call to ma97 factor or
ma97 factor solve.

control, info: see Section 2.6.3.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

job is an optional INTENT(IN) scalar of type INTEGER. If absent, AX = B is solved. In the positive-definite case, the
Cholesky factorization that has been computed may be expressed in the form

SAS = (PL)(PL)†

where P is a permutation matrix and L is lower triangular. In the indefinite case, the factorization that has been
computed may be expressed in the form

SAS = (PL)D(PL)†

where P is a permutation matrix, L is unit lower triangular, and D is block diagonal with blocks of order 1 and
2. S is a diagonal scaling matrix (S is equal to the identity, if control%scaling=0 and scale is not present
on the last call to ma97 factor or ma97 factor solve). A partial solution may be computed by setting job to
have one of the following values:

1 for solving PLX = SB

2 for solving DX = B (indefinite case only)

3 for solving (PL)†S−1X = B

4 for solving D(PL)†S−1X = B (indefinite case only)

Restriction: job = 1,2,3,4.

2.6.7 The finalisation and free subroutines

Once all other calls are complete for a problem or after an error return that does not allow the computation to continue,
a call should be made to free memory allocated by HSL MA97 and associated with the structures akeep and/or fkeep
using calls to ma97 free.
The ma97 finalise call is provided as a convenient shortcut for freeing memory associated with both akeep and
fkeep.

call ma97_free(akeep)
call ma97_free(fkeep)
call ma97_finalise(akeep,fkeep)

akeep is an INTENT(INOUT) scalar of type ma97 akeep that must be passed unchanged. On exit, allocatable components
will have been deallocated.

fkeep is an optional INTENT(INOUT) scalar of type ma97 fkeep that must be passed unchanged. On exit, allocatable
components will have been deallocated.

2.6.8 To obtain information on the factorization (positive-definite case)

After a successful call to ma97 factor or to ma97 factor solve with matrix type=3 or -3 and prior to a call to
ma97 free or ma97 finalise, information on the pivots may be obtained using a call of the form

call ma97_enquire_posdef(akeep,fkeep,control,info,d)

akeep, fkeep: see Section 2.6.6.

control, info: see Section 2.6.3.

d is an INTENT(OUT) rank-1 array of type REAL and size n. The i-th pivot will be placed in d(i), i = 1,2,...,n.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 7

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

2.6.9 To obtain information on the factorization (indefinite case)

After a successful call to ma97 factor or to ma97 factor solve with matrix type=4, -4 or -5 and prior to a call
to ma97 free or ma97 finalise, information on the pivot sequence and the matrix D−1 may be obtained using a call
of the form

call ma97_enquire_indef(akeep,fkeep,control,info[,piv_order,d])

akeep, fkeep: see Section 2.6.6.

control, info: see Section 2.6.3.

piv order is an optional INTENT(OUT) rank-1 array of type INTEGER and size n. If present, then if i is used to index
a variable, its position in the pivot sequence will be placed in piv order(i), with its sign negative if it is part
of a 2×2 pivot.

d is an optional INTENT(OUT) rank-2 array of package type with extents 2 and n. If present, the diagonal entries of
D−1 will be placed in d(1,i), i = 1,2,...,n, the off-diagonal entries of D−1 will be placed in d(2,i), i =
1,2,...,n-1, and d(2,n) will be set to zero.

2.6.10 To alter D−1

After a successful call to ma97 factor or to ma97 factor solve with matrix type=4, -4 or -5 and prior to a call
to ma97 free or ma97 finalise, the matrix D−1 may be altered using a call of the form

call ma97_alter(d,akeep,fkeep,control,info)

d is an INTENT(IN) rank-2 array of package type with extents 2 and n. The diagonal entries of D−1 will be altered
to d(1,i), i = 1,2,...,n, and the off-diagonal entries will be altered to d(2,i), i = 1,2,...,n-1 (and
PLD(PL)† will no longer be a factorization of A).

akeep, fkeep: see Section 2.6.6.

control, info: see Section 2.6.3.

2.6.11 To solve linear systems in the indefinite singular case

In the indefinite case, after the call to ma97 factor or ma97 factor solve, one or more calls of the following form
may be made. It computes the same solution X as ma97 solve but, if the j−th system is inconsistent, it also returns
the Fredholm alternative solution Yj that satisfies AYj = 0 and Yj

†B j 6= 0.
For one or more right-hand sides,

call ma97_solve_fredholm(nrhs,flag_out,x,ldx,akeep,fkeep,control,info)

nrhs, ldx, akeep, fkeep, control, info: see Section 2.6.6.

flag out is an INTENT(OUT) rank-1 array of size nrhs and type LOGICAL. On exit, flag out(j) is set to .true. if
the j−th system is consistent and to .false. otherwise.

x is an INTENT(INOUT) rank-2 array of package type with extents ldx and 2∗nrhs. It must be set so that, for
j= 1,2, ...,nrhs, x(i,j) holds the component of the right-hand side for variable i to the jth system. On
exit, x(1:n,1:nrhs) holds the same solution as is returned by ma97 solve and, if flag out(j)=.false.,
x(1:n,nrhs+j) holds the Fredholm alternative solution for the j−th system.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

2.6.12 To form a matrix-vector or matrix-matrix product with S−1PL or (S−1PL)†

In the indefinite case, after the call to ma97 factor, one or more calls of the following form may be made to calculate
Y = S−1PLX or Y = (S−1PL)†X .
To form a matrix-vector product with a triangular factor,

call ma97_lmultiply(trans,x1,y1,akeep,fkeep,control,info)

or, to form a matrix-matrix product,

call ma97_lmultiply(trans,k,x,ldx,y,ldy,akeep,fkeep,control,info)

trans is an INTENT(IN) scalar of type LOGICAL. If set to .true., the operation Y = (S−1PL)†X is performed.
Otherwise, if set to .false., the operation Y = S−1PLX is performed.

k is an INTENT(IN) scalar of type INTEGER that holds the number columns in the matrices X and Y . Restriction:
k≥1.

x1 is an INTENT(IN) rank-1 array of package type and size n. On input it must contain the vector X .

x is an INTENT(IN) rank-2 array of package type with extents ldx and k. It must be set to contain the matrix X .

ldx is an INTENT(IN) scalar of type INTEGER that must be set to the first extent of the array x. Restriction: ldx≥n.

y1 is an INTENT(OUT) rank-1 array of package type and size n. On exit, it will be set to the requested matrix-vector
product Y .

y is an INTENT(OUT) rank-2 array of package type with extents ldy and k. On exit, it will be set to the requested
matrix-matrix product Y .

ldy is an INTENT(IN) scalar of type INTEGER that must be set to the first extent of the array y. Restriction: ldy≥n.

akeep, fkeep, control, info: see Section 2.6.6.

2.6.13 To solve PLX = SB for sparse B

After the call to ma97 factor (or ma97 factor solve), one or more calls of the following form may be made to solve
PLX = SB for a single sparse right-hand side

call ma97_sparse_fwd_solve(nbi,bindex,b,order,lflag,nxi,xindex,x, &
akeep,fkeep,control,info)

nbi is an INTENT(IN) scalar of type INTEGER that must hold the number of nonzero entries in the right-hand side.
Restriction: 1≤nbi≤n.

bindex is an INTENT(IN) rank-1 array of type INTEGER. The first nbi entries must hold the indices of the nonzero
entries in the right-hand side.

b is an INTENT(IN) rank-1 array of package type and size n. If bindex(i)=k, b(k) must hold the k-th nonzero
component of the right-hand side; other entries of b are not accessed.

order is an INTENT(IN) rank-1 array of type INTEGER and size n. It must be unchanged since the call to ma97 analyse.

lflag is an INTENT(INOUT) rank-1 array of type LOGICAL and size n. On entry, all the entries must be set by the
user to .false.. On exit, if xindex(i)=k then lflag(k)=.true. and x(k) is nonzero. To reset flag(:) to
.false., it is sufficient to consider only the entries xindex(1:nxi).

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 9

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

nxi is an INTENT(OUT) scalar of type INTEGER. On exit, nxi holds the number of nonzero entries in the solution.

xindex is an INTENT(OUT) rank-1 array of package type and size nxi (that is at most n). On exit, the first nxi entries
hold the indices of the nonzero entries in the solution.

x is an INTENT(INOUT) rank-1 array of package type and size n. On entry, it must be set by the user to zero. On exit,
if xindex(i)=k, x(k) holds the k-th nonzero component of the solution; all other entries of x are zero.

akeep, fkeep, control, info: see Section 2.6.6.

2.7 The derived types

2.7.1 The derived data type for holding control parameters

The derived data type ma97 control is used to hold controlling data. The components, which are automatically given
default values in the definition of the type, are:

Printing controls

print level is a scalar of type INTEGER that is used to controls the level of printing. The different levels are:

< 0 No printing.

= 0 Error and warning messages only.

= 1 As 0, plus basic diagnostic printing.

> 1 As 1, plus some additional diagnostic printing.

The default is print level=0.

unit diagnostics is a scalar of type INTEGER that holds the unit number for diagnostic printing. Printing is
suppressed if unit diagnostics< 0. The default is unit diagnostics=6.

unit error is a scalar of type INTEGER that holds the unit number for error messages. Printing of error messages is
suppressed if unit error<0. The default is unit error=6.

unit warning is a scalar of type INTEGER that holds the unit number for warning messages. Printing of warning
messages is suppressed if unit warning<0. The default is unit warning=6.

Controls used by ma97 analyse and ma97 analyse coord

ordering is a scalar of type INTEGER. If set to 0, the user must supply an elimination order in order; otherwise an
elimination order will be computed by ma97 analyse or ma97 analyse coord. The options are:

0 User-supplied ordering is used.

1 An approximate minimum degree (AMD) ordering is used.

2 A minimum degree ordering is used.

3 METIS ordering with default settings is used. Note that the user needs to supply the METIS library. If
METIS is not supplied and this option is requested, the routine will return immediately with an error.

4 MA47 ordering for indefinite matrices is used.

5 A heuristic choice is made between AMD and METIS orderings assuming the factorization is to be run in
parallel. If METIS is not available, AMD is used. The actual ordering chosen is indicated by the value of
info%ordering on return from ma97 analyse or ma97 analyse coord.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 10

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

6 As 5 but assuming the factorization is to be run in serial.
7 A matching-based elimination ordering is computed using HSL MC80. AMD is used on the compressed

matrix. This option should only be chosen for indefinite systems. A scaling is also computed that may be
passed to ma97 factor or ma97 factor solve (see control%scaling below).

8 As 7 but METIS is used on the compressed matrix.

The default is ordering=5. Restriction: ordering=0, 1,..., 8.

nemin is a scalar of type INTEGER that controls node amalgamation. Two neighbours in the elimination tree are
merged if they both involve fewer than nemin eliminations. The default is nemin=8. The default is used if
nemin<1.

Controls used by ma97 factor

scaling is a scalar of type INTEGER that controls the use of scaling. The available options are:

≤ 0 No scaling (scale optional argument not present), or user-supplied scaling (scale optional argument
present).

= 1 Generate a scaling using a weighted bipartite matching using the package MC64.

= 2 Generate a scaling by applying the iterative method of the package MC77 for one iteration in the infinity
norm and three iterations in the one norm.

= 3 A matching-based ordering has been generated during the analyse phase using control%ordering =
7 or 8. Use the scaling generated as a side-effect of this process. The scaling will be the same as that
generated with control%scaling = 1 if matrix values have not changed. This option will generate an
error if a matching-based ordering was not used.

≥ 4 Generate a scaling by minimising the absolute sum of log values in the scaled matrix using the package
MC30.

The default is scaling=0.

Controls used by ma97 factor with matrix type=4, -4 or -5 (A indefinite)

action is a scalar of type default LOGICAL. If the matrix is found to be singular (has rank less than the number of non-
empty rows), the computation continues after issuing a warning if action has the value .true. or terminates
with an error if it has the value .false. The default is action=.true.

factor min is a scalar of type INTEGER(long) that controls the use of parallelism within the factorization. Parallelism
is only used if the predicted number of floating point operations (info%num flops) is greater than or equal to
factor min. The default is factor min= 2×107.

multiplier is a scalar of type REAL. To allow for delayed pivots, the arrays that store the factors and associated index
lists are allocated to accommodate a matrix of order s×max(1,multiplier), where s is the expected size of
the factors without delays. If, during the factorization, this space is found to be too small, additional memory
will be allocated dynamically. The default is multiplier= 1.1.

small is a scalar of type REAL. Any pivot whose modulus is less than small is treated as zero. The default in
the double and double complex versions is small= 10−20, and in the single and single complex versions is
small= 10−12.

u is a scalar of type REAL that holds the relative pivot tolerance u. The default in the double and double complex
versions is u=0.01, and in the single and single complex versions is u=0.1. Values outside the range [0,0.5]
are treated as the closest value in that range.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 11

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

Controls used by ma97 solve and/or ma97 solve fredholm

consist tol is a scalar of type REAL that holds the tolerance used to determine if a system is inconsistent in
ma97 solve fredholm. The default is consist tol=epsilon(), the smallest quantity for the package type
such that 1+epsilon 6= 1.

solve mf is a scalar of type LOGICAL. If solve mf=.true. a multifronal-style forward solve is used. Otherwise
a supernodal-style solve is used. The supernodal solve does not use parallelism during the forward solve and
typically performs best on small problems, with the multifrontal solve performing best on large problems. If
the user wishes to make more than one call to ma97 solve, we recommend comparing the solve time with both
solve mf=.true. and solve mf=.false.. The default value is solve mf=.false..

solve blas3 is a scalar of type LOGICAL that controls whether level 2 (solve blas3=.false.) or level 3 (solve blas3=.true.)
BLAS are used in the case of a single right-hand side solution. On larger problems the level 3 BLAS can often
out perform the level 2 BLAS. The default is solve blas3=.false..

solve min is a scalar of type INTEGER(long) that controls the use of parallelism within the solve. Parallelism is
only used if the number of entries in L (info%num factor) is greater than or equal to solve min. The default
is solve min=100000.

2.7.2 The derived data type for holding information

The derived data type ma97 info is used to hold parameters that give information about the progress and needs of the
algorithm. The components of ma97 info (in alphabetical order) are:

flag is a scalar of type INTEGER that gives the exit status of the algorithm (details in Section 2.8).

flag68 is a scalar of type INTEGER. On exit from ma97 analyse or ma97 analyse coord, it holds the exit status
from HSL MC68.

flag77 is a scalar of type INTEGER. On exit from ma97 factor or ma97 factor solve, it holds the exit status from
MC77.

matrix dup is a scalar of type INTEGER. On exit from ma97 analyse with check set to .true. or from
ma97 analyse coord, it holds the number of duplicate entries that were found and summed.

matrix missing diag is a scalar of type INTEGER. On exit from ma97 analyse with check set to .true., or from
ma97 analyse coord, it holds the number of diagonal entries without an explicitly provided value.

matrix outrange is a scalar of type INTEGER. On exit from ma97 analyse with check set to .true. or from
ma97 analyse coord, it holds the number of out-of-range entries that were found and discarded.

matrix rank is scalar of type INTEGER. On exit from ma97 analyse and ma97 analyse coord, it holds the structural
rank of A, if available (otherwise, it is set to n). On exit from ma97 factor or ma97 factor solve, it holds the
computed rank of the factorized matrix.

maxdepth is a scalar of type INTEGER. On exit from ma97 analyse or ma97 analyse coord, it holds the maximum
depth of the assembly tree.

maxfront is a scalar of type INTEGER. On exit from ma97 analyse or ma97 analyse coord, it holds the maximum
front size in the positive-definite case (or in the indefinite case with the same pivot sequence). On exit from
ma97 factor or ma97 factor solve, it holds the maximum front size. The maximum front size is the maximum
number of rows in a supernode.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 12

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

maxsupernode is a scalar of type INTEGER. On exit from ma97 analyse or ma97 analyse coord, it holds the
maximum supernode size in the positive-definite case (or in the indefinite case with the same pivot sequence).
On exit from ma97 factor or ma97 factor solve, it holds the maximum supernode size. The maximum
supernode size is the maximum number of columns in a supernode.

num delay is scalar of type INTEGER. On exit from ma97 factor or ma97 factor solve, it holds the number of
eliminations that were delayed, that is, the total number of fully-summed variables that were passed to the father
node because of stability considerations. If a variable is passed further up the tree, it will be counted again.

num factor is scalar of type INTEGER(long). On exit from ma97 analyse or ma97 analyse coord, it holds the
number of entries that will be in the factor L in the positive-definite case (or in the indefinite case with the same
pivot sequence). On exit from ma97 factor or ma97 factor solve, it holds the actual number of entries in the
factor L. In the indefinite case, 2n entries of D−1 are also held.

num flops is scalar of type INTEGER(long). On exit from ma97 analyse or ma97 analyse coord, it holds the
number of floating-point operations that will be needed to perform the factorization in the positive-definite case
(or in the indefinite case with the same pivot sequence). On exit from ma97 factor or ma97 factor solve, it
holds the number of floating-point operations performed.

num neg is a scalar of type INTEGER. On exit from ma97 factor or ma97 factor solve, it holds the number of
negative eigenvalues of the matrix D.

num sup is a scalar of type INTEGER. On exit from ma97 analyse or ma97 analyse coord, it holds the number of
supernodes in the problem.

num two is scalar of type INTEGER. On exit from ma97 factor and ma97 factor solve, it holds the number of 2×2
pivots used by the factorization, that is, the number of 2×2 blocks in D.

ordering is a scalar of type INTEGER. On exit from ma97 analyse or ma97 analyse coord, it indicates the ordering
method chosen. Values have the same meanings as in the context of control%ordering.

stat is a scalar of type INTEGER. In the event of an allocation or deallocation error, it holds the Fortran stat parameter
if it is available (and is set to 0 otherwise).

2.8 Warning and error messages

A successful return from a subroutine in the package is indicated by info%flag having the value zero. A negative
value is associated with an error message that by default will be output on unit control%unit error.

Possible negative values are:

−1 An error has been made in the sequence of calls (this includes calling a subroutine after an error that cannot be
recovered from).

−2 Returned by ma97 analyse and ma97 analyse coord if n<0. Also returned by ma97 analyse coord if ne<1.

−3 Returned by ma97 analyse if there is an error in ptr.

−4 Returned by ma97 analyse if all the variable indices in one or more columns are out-of-range. Also returned by
ma97 analyse coord if all entries are out-of-range.

−5 Returned by ma97 factor and ma97 factor solve if matrix type is out-of-range. The user may reset matrix type
and recall ma97 factor or ma97 factor solve.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 13

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

−6 Returned by ma97 factor and ma97 factor solve if matrix type=-3 or -4 (A is Hermitian) and one or more
of the diagonal entries is not real.

−7 Returned by ma97 factor and ma97 factor solve if matrix type=4, -4 or -5 and control%action =
.false. when the matrix is found to be singular. The user may reset the matrix values in val and recall
ma97 factor or ma97 factor solve.

−8 Returned by ma97 factor and ma97 factor solve if matrix type=3 or -3 and the matrix is found to be not
positive definite. This may be because the scaling MC64 found the matrix to be singular. The user may reset the
matrix values in val and recall ma97 factor or ma97 factor solve.

−9 Returned by ma97 factor if IEEE infinities found in the reduced matrix, probably caused by control%small or
control%u having too small a value. The user may reset control%small and/or control%u or may reset the
matrix values in val and recall ma97 factor or ma97 factor solve.

−10 Returned by ma97 factor and ma97 factor solve if ma97 analyse was called with check set to .false.
but ptr and/or row is not present.

−11 Returned by ma97 analyse and ma97 analyse coord if control%ordering is out-of-range, or
control%ordering=0 and the user has either failed to provide an elimination order or an error has been found
in the user-supplied elimination order (held in order).

−12 Returned by ma97 factor solve, ma97 solve, ma97 solve fredholm, and ma97 lmultiply if there is an
error in the size of array x (that is, ldx<n or nrhs<1). The user may reset ldx and/or nrhs and recall
ma97 factor solve, , ma97 solve, ma97 solve fredholm, or ma97 lmultiply. This error is also returned
by ma97 lmultiply if there is an error in the size of array y (that is, ldy<n).

−13 Returned by ma97 solve if job is out-of-range. The user may reset job and recall ma97 solve.

−14 Returned by ma97 enquire posdef if matrix type=4, -4 or -5 on the last call to ma97 factor or
ma97 factor solve.

−15 Returned by ma97 enquire indef if matrix type=3 or -3 on the last call to ma97 factor or
ma97 factor solve.

−16 Allocation error. If available, the stat parameter is returned in info%stat. The user may wish to try the more
memory conservative codes HSL MA86 or HSL MA77.

−17 Returned by ma97 analyse and ma97 analyse coord if METIS ordering was requested but METIS is not
available.

−18 Returned by ma97 analyse and ma97 analyse coord if there is an unexpected error from HSL MC68. The user
is advised to ensure that if ma97 analyse was called, check was set to .true.. Further information may be
provided by info%flag68.

−19 Returned by ma97 factor and ma97 factor solve if there is an unexpected error from MC77. The user is
advised to ensure that if ma97 analyse was called, check was set to .true.. Further information may be
provided by info%flag77.

−20 Returned by ma97 analyse and ma97 analyse coord if control%ordering=7 or 8 but val is not present.

−21 Returned by ma97 factorise if control%scaling=3 but a matching based ordering was not used during the
call to ma97 analyse or ma97 analyse coord (i.e. was called with control%ordering 6=7 or 8).

−22 Returned by ma97 sparse fwd solve if nbi is out of range. The user may reset nbi and recall.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 14

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

A positive value of info%flag is used to warn the user that the input matrix data may be faulty or that the subroutine
cannot guarantee the solution obtained. Possible values are:

+1 Returned by ma97 analyse and ma97 analyse coord if out-of-range variable indices found. Any such entries
are ignored and the computation continues. info%matrix outrange is set to the number of such entries.

+2 Returned by ma97 analyse and ma97 analyse coord if duplicated indices found. Duplicates are recorded and
the corresponding entries are summed. info%matrix dup is set to the number of such entries.

+3 Returned by ma97 analyse and ma97 analyse coord if both out-of-range and duplicated variable indices found.

+4 Returned by ma97 analyse and ma97 analyse coord if one and more diagonal entries of A is missing.

+5 Returned by ma97 analyse and ma97 analyse coord if one and more diagonal entries of A is missing and
out-of-range and/or duplicated variable indices have been found.

+6 Returned by ma97 analyse and ma97 analyse coord if A is found be (structurally) singular. This will overwrite
any of the above warnings.

+7 Returned by ma97 factor and ma97 factor solve if control%action is set to .true. and the matrix is found
to be (structurally or numerically) singular.

+8 Returned by ma97 factor and ma97 factor solve if control%ordering=7 or 8 (i.e. a matching-based
ordering was used) but the associated scaling was not (i.e. control%scaling6= 3).

3 GENERAL INFORMATION

Workspace: Provided automatically by the module.

Other routines called directly: MC30, HSL MC34, HSL MC64, HSL MC68 (optionally using METIS version 4.x), HSL MC69,
MC77, HSL MC78, HSL MC80, axpy, gemm, gemv, nrm2, potrf, swap, syrk, trmv, trmm, trsm, trsv.

Input/output: Output is provided under the control of control%print level. In the event of an error, diagnostic
messages are printed. The output units for these messages are respectively controlled by control%unit err,
control%unit warning and control%unit diagnostics (see Section 2.7.1).

Restrictions: n≥0; ne≥1; nrhs≥1; ldx≥n; ldy≥n;
control%ordering=0, 1, 2, 3, 4, 5, 6, 7, 8;
matrix type = 3, 4, -3, -4, or -5;
job = 1, 2, 3, or 4; 1≤nbi≤n.

Portability: Fortran 95, plus allocatable dummy arguments and allocatable components of derived types. OpenMP
3.0 or above for (optional) parallel usage.

Changes from Version 1
Version 2 offers the option of computing a matching-based elimination ordering. This requires the user to supply
the numerical values of the matrix on the call to the analyse phase. If the user wishes to factorize another matrix
with the same sparsity pattern but different numerical values, it may be necessary to recall the analyse phase. A
matching-based elimination ordering may be a good choice for tough indefinite systems.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 15

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

4 METHOD

ma97 analyse and ma97 analyse coord
If check is set to .true. on the call to ma97 analyse or if ma97 analyse coord is called, the HSL package HSL MC69
is used to check the matrix data. The cleaned integer matrix data (duplicates are summed and out-of-range indices
discarded) is stored in akeep. The use of checking is optional on a call to ma97 analyse as it incurs both time
and memory overheads. Some form of checking is recommended since the behaviour of the other routines in the
package is unpredictable if duplicates and/or out-of-range variable indices are entered. Calling the HSL MC69 routine
mc69 verify offers an alternative that can be used for debugging purposes.

If the user has supplied a pivot order it is checked for errors. Otherwise, a pivot order is generated using HSL MC68,
or if a matching-based ordering is requested, HSL MC80. The pivot order is used to construct the assembly tree using
HSL MC78.

On exit, order is set so that order(i) holds the position at which variable i is eliminated. If a user order was
supplied, this order may differ, but will be equivalent in terms of fill-in to that provided.

If a matching-based ordering is requested and scale is present, on exit, scale contains scaling factors computed
by MC64. These may be passed unchanged to ma97 factor and ma97 factor solve.

ma97 factor and ma97 factor solve
ma97 factor and ma97 factor solve optionally compute a scaling and then perform the numerical factorization.
The user must specify whether or not the matrix is positive definite. If matrix type is set to 3 or -3, no pivoting is
performed. As a result the computation will terminate with an error if a non-positive pivot is encountered.

The factorization uses the assembly tree that was set up by the analyse phase. If running on a single thread (or if
there is insufficient work available to justify running in parallel), the nodes of the tree are iterated over in a post-order.

At a node, the contributions from the children relating to those columns that are fully summed at this node are first
assembled. A dense partial factorization is then performed on these columns. In the positive-definite case, LAPACK’s
potrf (or herk for Hermitian matrices) is used. In the indefinite case, an algorithm based on the same pivoting

algorithm as HSL MA64 is used.
The generated element is calculated by first forming the outer product of the fully summed columns’ uneliminated

rows. The contributions from the children are then added, and the stack memory used by the children is freed. As this
involves copying from one stacked contribution to another, two separate stacks are used to do this.

If a pivot candidate does not pass pivot tests at a given node, it is delayed to the parent node where additional
eliminations may make the pivot feasible. This results in the generation of additional fill-in and floating-point
operations, and may result in additional memory allocations being required.

In parallel computation, we exploit two levels of parallelism using OpenMP tasks. In tree-level parallelism,
different subtrees are factorized in independent tasks. To ensure results are bit-compatible regardless of the number
of threads used, the assembly order of the children is fixed at assembly time. In node-level parallelism, the operations
forming the outer-product in both the dense factorization kernel and the calculation of the generated element are broken
into multiple tasks. Bit-compatibility is ensured in this case by using a data-parallel approach so each individual sum
is effectively calculated in serial.

If ma97 factor solve is called, the forward substitutions are performed as the factor entries are generated. Once
the factorization is complete, the back substitutions are performed by an internal call to ma97 solve with job = 3
(positive-definite case) or job = 4 (indefinite case).

ma97 solve
Having checked the user’s data, ma97 solve performs a forward substitution followed by a combined diagonal solve
and back substitution (unless only one of these is requested).

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 16

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

In a supernodal solve updates are done directly into the right-hand side vector and do not readily admit bit-
compatible parallelism in the forward substitution. In the multifrontal solve updates are passed up the tree utilising
a stack. This allows parallelism to be implemented but can be slower than the supernodal solve on small problems.
Regardless of whether a supernodal or multifrontal solve is chosen the same backwards solve is used that works
directly on the right-hand side vectors. Due to the differing data dependencies from the forward substitution a bit-
compatible parallel solve is possible.

The matrix factor must be accessed once for the forward substitution and once for the back substitution. This is
independent of the number of right-hand sides so that solving for several right-hand sides at once is significantly faster
than repeatedly solving for a single right-hand side.

References:
[1] J.D. Hogg and J.A. Scott. (2011). HSL MA97: a bit-compatible multifrontal code for sparse symmetric systems.
RAL Technical Report. RAL-TR-2011-024.

5 EXAMPLE OF USE

5.1 First example: sparse column entry

Suppose we wish to factorize the matrix

A =

2. 1.
1. 4. 1. 1.

1. 3. 2.
2. 0.

1. 2.

and then solve for the right-hand side

B =

4.

12.
10.
4.
4.

.
The following code may be used. Note that, in this example, it would be more efficient to pass the right-hand side to
ma97 factor solve; here our aim is to illustrate calling ma97 solve after ma97 factor.

! Simple code to illustrate use of hsl_ma97
program hsl_ma97ds

use hsl_ma97_double
implicit none

! Derived types
type (ma97_akeep) :: akeep
type (ma97_fkeep) :: fkeep
type (ma97_control) :: control
type (ma97_info) :: info

! Parameters
integer, parameter :: wp = kind(0.0d0)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 17

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

integer, dimension (:), allocatable :: ptr
integer, dimension (:), allocatable :: piv_order
integer, dimension (:), allocatable :: row
real(wp), dimension (:), allocatable :: val
real(wp), dimension (:), allocatable :: x
real(wp), dimension (:,:), allocatable :: d

integer :: matrix_type,n,ne
logical :: check

! Read in the order n of the matrix and number of entries in lower triangle
read (*,*) n,ne

! Allocate arrays for matrix data and arrays for hsl_ma97
allocate (ptr(n+1),row(ne),val(ne))
allocate (x(n),d(2,n))

read (*,*) ptr(1:n+1)
read (*,*) row(1:ne)
read (*,*) val(1:ne)

! Perform analyse and factorise with data checking
check = .true.
call ma97_analyse(check,n,ptr,row,akeep,control,info)
if (info%flag < 0) go to 100
matrix_type = 4 ! Real, symmetric indefinite
call ma97_factor(matrix_type,val,akeep,fkeep,control,info)
if (info%flag < 0) go to 100

! Read in the right-hand side and copy into resid.
read (*,*) x(1:n)

! Solve
call ma97_solve(x,akeep,fkeep,control,info)
if (info%flag < 0) go to 100
write (*,’(/a,/,(3es18.10))’) ’ The computed solution is:’, x(1:n)

! Determine the pivot order used
allocate (piv_order(1:n))
call ma97_enquire_indef(piv_order, d, akeep, fkeep, control, info)
write (6,*) ’piv_order’, piv_order(1:n)

100 continue
call ma97_finalise(akeep, fkeep)

end program hsl_ma97ds

with the following data:

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 18

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

5 8
1 3 6 8 8 9
1 2 2 5 3 4 3 5
2. 1. 4. 1. 1. 2. 3. 2.
4. 12. 10. 4. 4.

This produces the following output:

The computed solution is:
1.000 2.000 2.000 1.000 1.000

5.2 Second example: coordinate entry, refactorization, factor solve

Suppose we wish to factorize the matrix

A =

1. −3. 1.
−3. −5. 6. 4.

6. 2.
1. 2. 3.

4. 1.

and then solve for the right-hand sides

B =

−1. −5.
25. −40.
20. 8.
19. −8.
13. −1.

. Suppose we then wish to solve the following system with the same pattern in a single call:

2. 1. 7.
1. 1. 8. 2.

8. 1.
7. 1. 8.

2. 8.

x =

8.

89.
40.
37.
42.

The following code may be used.

! Simple code to illustrate use of hsl_ma97
program hsl_ma97ds1

use hsl_ma97_double
implicit none

! Derived types
type (ma97_akeep) :: akeep
type (ma97_fkeep) :: fkeep
type (ma97_control) :: control
type (ma97_info) :: info

! Parameters
integer, parameter :: wp = kind(0.0d0)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 19

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

integer, dimension (:), allocatable :: row
integer, dimension (:), allocatable :: col
real(wp), dimension (:), allocatable :: val
real(wp), dimension (:,:), allocatable :: x

integer :: matrix_type,n,ne

! Read in the order n of the matrix and number of entries in lower triangle
read (*,*) n,ne

! Allocate arrays for matrix data and arrays for hsl_ma97
allocate (row(ne),col(ne),val(ne))
allocate (x(n,2))

read (*,*) row(1:ne)
read (*,*) col(1:ne)
read (*,*) val(1:ne)

! Perform analyse and factorise with coordinate input
call ma97_analyse_coord(n,ne,row,col,akeep,control,info)
if (info%flag < 0) go to 100
matrix_type = 4 ! Real, symmetric indefinite
call ma97_factor(matrix_type,val,akeep,fkeep,control,info)
if (info%flag < 0) go to 100

! Read in the right-hand side
read (*,*) x(1:n,1:2)

! Solve
call ma97_solve(2,x,n,akeep,fkeep,control,info)
if (info%flag < 0) go to 100
write (*,’(/a,/,(3es18.10))’) ’ The computed solution is:’, x(1:n,1)
write (*,’(3es18.10)’) x(1:n,2)

! Read values of second matrix with same pattern
read (*,*) val(1:ne)

! Read another right hand side
read (*,*) x(1:n,1)

! Perform combined factor and solve
call ma97_factor_solve(matrix_type,val,x(1:n,1),akeep,fkeep,control,info)
write (*,’(/a,/,(3es18.10))’) ’ Next solution is:’, x(1:n,1)

100 continue
call ma97_finalise(akeep, fkeep)

end program hsl_ma97ds1

with the following data:

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 20

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

5 9
1 2 1 2 3 5 4 4 5
1 1 4 2 2 2 4 3 5
1. -3. 1. -5. 6. 4. 3. 2. 1.
-1. 25. 20. 19. 13.
-5. -40. 8. -8. -1.
2. 1. 7. 1. 8. 2. 8. 1. 8.
16.5 89.0 40.5 41.0 42.0

This produces the following output:

Warning from ma97_analyse_coord. Warning flag = 4
one or more diagonal entries is missing

The computed solution is:
1.0000000000E+00 2.0000000000E+00 3.0000000000E+00
4.0000000000E+00 5.0000000000E+00

-3.0000000000E+00 1.0000000000E+00 -4.0000000000E+00
1.0000000000E+00 -5.0000000000E+00

Next solution is:
4.0000000000E+00 5.0000000000E+00 9.0000000000E+00
5.0000000000E-01 4.0000000000E+00

Note that the warning is entirely innocous and is merely due to the absence of a non-zero in the diagonal (3,3) position.

5.3 Third example: advanced features

The following example demonstrates some advanced capabilities of HSL MA97. First the following singular system is
considered,

1.0 2.0 3.0 4.0
2.0 5.0
3.0
4.0

X =

7.50 7.50
3.00 3.00
0.75 1.00
1.00 1.00

 ,

where the first right-hand side is consistent and the second is inconsistent. The routine ma97 solve fredholm is used
to check consistency and produce a Fredholm alternative solution for the second right-hand side. The example then
demonstrates multiplying this solution by the factor S−1PL, and then solves the following system, that has a sparse
right-hand side,

S−1PLx =

0.50
1.25

0
0

 .

The code is as follows:

! Simple code to illustrate use of hsl_ma97
program hsl_ma97ds2

use hsl_ma97_double
implicit none

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 21

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

! Derived types
type (ma97_akeep) :: akeep
type (ma97_fkeep) :: fkeep
type (ma97_control) :: control
type (ma97_info) :: info

! Parameters
integer, parameter :: wp = kind(0.0d0)

integer, dimension (:), allocatable :: ptr
integer, dimension (:), allocatable :: row
integer, dimension (:), allocatable :: order
integer, dimension (:), allocatable :: bindex, xindex
logical, dimension (:), allocatable :: flag_out, lflag
real(wp), dimension (:), allocatable :: val
real(wp), dimension (:), allocatable :: b, xsparse, tmp
real(wp), dimension (:,:), allocatable :: x, y

integer :: i,j,matrix_type,n,ne,nrhs,nbi,nxi
logical :: check

! Read in the order n of the matrix and number of entries in lower triangle
read (*,*) n,ne,nrhs

! Allocate arrays for matrix data and arrays for hsl_ma97
allocate (ptr(n+1),row(ne),val(ne))
allocate (order(n),flag_out(nrhs))
allocate (x(n,2*nrhs),y(n,nrhs))
read (*,*) ptr(1:n+1)
read (*,*) row(1:ne)
read (*,*) val(1:ne)

! Perform analyse and factorise with data checking
check = .true.
call ma97_analyse(check,n,ptr,row,akeep,control,info,order)
if (info%flag < 0) go to 100
matrix_type = 4 ! Real, symmetric indefinite
call ma97_factor(matrix_type,val,akeep,fkeep,control,info)
if (info%flag < 0) go to 100

! Read in the right-hand sides
read (*,*) x(1:n,1:nrhs)

! Solve with Fredholm alternative if rhs is inconsistent
call ma97_solve_fredholm(nrhs,flag_out,x,n,akeep,fkeep,control,info)
if (info%flag < 0) go to 100
do j = 1,nrhs

if (flag_out(j)) then

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 22

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL HSL MA97

write (*,’(/a,i0)’, advance="no") ’Right-hand side ’, j
write (*,’(a)’) ’ is consistent with solution:’
write (*,’(3es18.10)’) x(1:n,j)

else
write (*,’(/a,i0)’, advance="no") ’Right-hand side ’, j
write (*,’(a)’) ’ inconsistent. Ax=0, xˆTb/=0 given by:’
write (*,’(3es18.10)’) x(1:n,nrhs+j)

end if
end do

! Form (Sˆ{-1}PL)X
call ma97_lmultiply(.false.,nrhs,x,n,y,n,akeep,fkeep,control,info)
if (info%flag < 0) go to 100
do j = 1,nrhs

write (*,’(/a,i0,a)’) ’Sˆ{-1}PLX_’, j, ’ = ’
write (*,’(3es18.10)’) y(1:n,j)

end do

! Read sparse right-hand side
read (*,*) nbi
allocate (bindex(nbi),b(n),xindex(n),xsparse(n),lflag(n),tmp(nbi))
read (*,*) bindex(1:nbi)
read (*,*) tmp(1:nbi)
do i = 1,nbi

b(bindex(i)) = tmp(i)
end do

! Perform sparse fwd solve
lflag(:) = .false.
xsparse(:) = 0
call ma97_sparse_fwd_solve(nbi,bindex,b,order,lflag,nxi,xindex,xsparse, &

akeep,fkeep,control,info)
if (info%flag < 0) go to 100
write(*,’(/a)’) ’Sparse solution has entries:’
do i = 1,nxi

write (*,’(i0,3es18.10)’) xindex(i), xsparse(xindex(i))
end do

100 continue
call ma97_finalise(akeep, fkeep)

end program hsl_ma97ds2

Used with the following data

4 5 2
1 5 6 6 6
1 2 3 4 2
1.0 2.0 3.0 4.0 5.0
7.50 3.00 0.75 1.00

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 23

HSL MA97 v2.8.1
Documentation date: November 15, 2023

HSL MA97 HSL

7.50 3.00 1.00 1.00
2
1 2
0.50 1.25

This produces the following output:

Warning from ma97_analyse. Warning flag = 4
one or more diagonal entries is missing

Warning from ma97_factor. Warning flag = 7
Matrix found to be singular

Right-hand side 1 is consistent with solution:
2.5000000000E-01 5.0000000000E-01 0.0000000000E+00
1.5625000000E+00

Right-hand side 2 inconsistent. Ax=0, xˆTb/=0 given by:
0.0000000000E+00 0.0000000000E+00 1.0000000000E+00

-7.5000000000E-01

Sˆ{-1}PLX_1 =
4.5000000000E-01 5.0000000000E-01 4.9218750000E+00
6.5625000000E+00

Sˆ{-1}PLX_2 =
4.5000000000E-01 5.0000000000E-01 4.0031250000E+00
5.3375000000E+00

Sparse solution has entries:
1 0.0000000000E+00
2 1.2500000000E+00
4 0.0000000000E+00
3 0.0000000000E+00

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 24

HSL MA97 v2.8.1
Documentation date: November 15, 2023

