
HSL MC64
C INTERFACE HSL

1 SUMMARY

Given a sparse matrix A = {ai j}m×n, m ≥ n, HSL MC64 attempts to find row and column permutation vectors that
make the permuted matrix have n entries on its diagonal. If the matrix is structurally nonsingular, the subroutine
optionally returns permutations that maximize the smallest element on the diagonal, maximize the sum of the diagonal
entries, or maximize the product of the diagonal entries of the permuted matrix. For the latter option, the subroutine
also finds scaling factors that may be used to scale the original matrix so that the nonzero diagonal entries of the
permuted and scaled matrix are one in absolute value and all the off-diagonal entries are less than or equal to one in
absolute value. The natural logarithms of the scaling factors ui, i = 1, ..., m, for the rows and v j, j = 1, ..., n, for
the columns are returned so that the scaled matrix B = {bi j}n×n has entries

bi j = ai j exp(ui + v j).

In this Fortran 95 version, there are added facilities from the original mc64 code for working on rectangular and
symmetric matrices. We use the term matching to mean a set of entries in the matrix no two of which are in the same
row or column. For the rectangular case, the user can permute the matching to the diagonal and identify the rows in
the structurally nonsingular block. The matching will lie on the diagonal of the permuted matrix. For the symmetric
case, the user must only supply the lower triangle and, if a scaling is computed, it will be a symmetric scaling with the
same property as in the unsymmetric case. In this case, a symmetric permutation is returned but the matching will not
normally be on the diagonal of the permuted matrix. If the matrix is structurally singular and symmetric the user may
call the maximum product matching only. In this case the matching returned will not be complete, but is optimal on a
submatrix. The scaling will be such that the normal scaling property holds in that case.

ATTRIBUTES — Version: 2.4.3 (1 November 2023) Interfaces: C, Fortran, MATLAB. Types: Real (single,double),
Complex (single,double). Calls: HSL MC34, MC64, HSL ZD11. Original date: July 2007. Version 2.0.0 May 2009.
Origin: I. S. Duff, Rutherford Appleton Laboratory, and J. Koster, Trondheim. Also J. D. Hogg, Rutherford Appleton
Laboratory (Version 2.1.0 and later). Language: Fortran 2003 subset (F95 + TR155581 + C interoperability). Re-
mark: HSL MC64 is a Fortran 95 encapsulation of MC64 and offers additional facilities to the Fortran 77 version. The
work of the first author was supported by EPSRC Grant EP/E053351/1.

2 HOW TO USE THE PACKAGE

2.1 C interface to Fortran code

This package is written in Fortran and a wrapper is provided for C programmers This wrapper may only implement a
subset of the full functionality described i the Fortran user documentation.

The wrapper will automatically convert between 0-based (C) and 1-based (Fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing. The conversion may be disabled by setting the control parameter
control.f arrays=1 and supplying all data using 1-based indexing. With 0-based indexing, the matrix is treated as
having rows and columns 0,1, . . .n−1. In this document, we assume 0-based indexing.

The wrapper uses the Fortran 2003 interoperability features. Matching C and Fortran compilers must be used,
for example, gcc and gfortran, or icc and ifort. If the Fortran compiler is not used to link the user’s program, additional
Fortran compiler libraries may need to be linked explicitly.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 1

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

HSL MC64 C interface HSL

2.2 Calling sequences

Access to the package requires inclusion of the header file

Single precision version
#include "hsl mc64s.h"

Double precision version
#include "hsl mc64d.h"

Single precision complex version
#include "hsl mc64c.h"

Double precision complex version
#include "hsl mc64z.h"

It is not possible to use more than one version at the same time.
The following subroutines are available to the user:

(a) mc64 default control sets default values for members of the mc64 control data type needed by other subrou-
tines.

(b) mc64 matching accepts the matrix A and finds the required permutations (and possibly a scaling).

2.3 Input of the matrix

The user should supply the matrix A in standard HSL format. If A is symmetric, only the lower triangular part should
be supplied. HSL standard format is compressed sparse column format with the entries within each column ordered
by increasing row index. There is no requirement that zero entries on the diagonal are explicitly included. Before
using HSL MC64, the HSL package HSL MC69 may be used to check for errors and to handle duplicates (HSL MC69
sums them) and out-of-range entries (HSL MC69 removes them).

If the user’s data is held using another standard sparse matrix format (such as coordinate format or sparse com-
pressed row format), we recommend using a conversion routine from HSL MC69 to put the data into standard HSL
format. The input of A is illustrated in Section 5.

2.4 Argument lists and calling sequences

2.4.1 Package types

The complex versions require C99 support for the double complex and float complex types. The real versions do
not require C99 support.
We use the following type definitions in the different versions of the package:
Single precision version

typedef float pkgtype

Double precision version
typedef double pkgtype

Single complex version
typedef float complex pkgtype

Double complex version
typedef double complex pkgtype

Elsewhere, for single and single complex versions replace double with float.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 2

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

HSL C interface HSL MC64

2.4.2 The default setting subroutine

Default values for members of the mc64 control structure may be set by a call to mc64 default control.

void mc64_default_control(struct mc64_control *control);

control has its members set to their default values, as described in Section 2.8.

2.5 To find the column permutation (and possibly a scaling)

void mc64_matching(int job, int matrix_type, int m, int n, const int *ptr,
const int *row, const pkgtype *val, const struct mc64_control *control,
struct mc64_info *info, int *perm, double *scale);

job must be set by the user to control the action. It is not altered by the subroutine. Possible values for job are:

1 Compute a row and column permutation of the matrix so that the permuted matrix has as many entries on its
diagonal as possible. The values on the diagonal are of arbitrary size.

2 Compute a row and column permutation of the matrix so that the smallest value on the diagonal of the
permuted matrix is maximized.

3 Compute a row and column permutation of the matrix so that the smallest value on the diagonal of the
permuted matrix is maximized. The algorithm differs from the one used for job=2 and may have quite a
different performance (see Section 4).

4 Compute a row and column permutation of the matrix so that the sum of the diagonal entries of the permuted
matrix is maximized.

5 Compute a row and column permutation of the matrix so that the product of the diagonal entries of the
permuted matrix is maximized. Vectors are also computed to scale the matrix so that the nonzero diagonal
entries of the permuted matrix are one in absolute value and all the off-diagonal entries are less than or
equal to one in absolute value. In the symmetric case the scaling will be symmeterised as described in
Section 4.

matrix type indicates if the matrix is symmetric or not. Values of 3 or greater are treated as symmetric, all other
values are treated as unsymmetric/rectangular depending on the values of m and n (this is consistent with the
matrix types defined by the HSL MC69 package).

m holds the number of rows m in the matrix A. Restriction: m ≥ n.

n holds the number of columns n in the matrix A. Restriction: n ≥ 1.

ptr is a rank-1 array of size at least n+1. ptr[j] must be set by the user so that ptr[j] is the position in row of the
first entry in column j and ptr[n] must be set to the number of matrix entries being input by the user.

row is a rank-1 array of size at least ptr[n]. It must hold the row indices of the entries of A with those for column 0
preceding those for column 1, and so on (within each column, the row indices may be in arbitrary order). If A is
symmetric, only those entries in the lower triangle should be stored.

val is a rank-1 array of size at least ptr[n], the leading part of which holds the values of the entries stored by
columns such that val[k] is the value of the entry in row[k].

control is used to control the actions of the package, see Section 2.8.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

HSL MC64 C interface HSL

info is use to return information about the execution of the package, as explained in Section 2.9.

perm is an rank-1 array of size (m+n). On exit, abs(perm[i]), i = 0,1, . . . ,m+ n− 1, will be set to permutation
vectors. The entries i = 0,1, . . .m− 1 hold a permutation vector such that row i of the original matrix is row
abs(perm[i]) in the permuted matrix. Column j of the original matrix is column abs(perm[m+j]) in the
permuted matrix. For rows and columns that are unmatched, the value of perm is negative. (Observe that if
control.f arrays==0 then it will be impossible to distinguish if row 0 is matched or not. If this is required, either
refer to info.strucrank or use Fortran array indexing).

scale may be NULL. If it is non-null and job = 5, it must be a rank-1 array of size (m+n) and, on exit, scale[i],
i= 0,1, ...,m-1, and scale[m+j], j= 0,2, ...,n-1 will be set to the row and column scaling vectors ui and v j as
discussed in Section 1. Note that these scale factors are applied to the original (unpermuted) matrix. If JOB 6= 5,
scale is not accessed.

2.6 Warning and error messages

A negative value of info.flag on exit from mc64 matching indicates that an error has occurred. No further calls
should be made until the error has been corrected. Possible values are:

- 1 Value of job out of range. job > 5 or job ≤ 0. info.more is set to the value of job. Note that further options
for job may be available in later releases.

- 2 Value of n out of range. n < 1. info.more is set to the value of n.

- 3 Value of ptr[n] out of range (ptr[n] < 1). info.more is set to the value of ptr[n].

- 4 Value of m < n. info.more is set to the value of m.

- 5 Failure of an allocate or deallocate statement. info.stat is set to the STAT value. info.more is set to the value
of n.

- 6 Index out of range. info.more is set to the position in array row where out of range index found.

- 7 Duplicate entry. info.more is set to the position in the array row where duplicate found.

- 8 A symmetric matrix was indicated but there were entries in the upper triangle in column info.more.

A positive value of info.flag on exit from mc64 matching is used to warn the user that the data may be faulty or
that the subroutine cannot guarantee the solution obtained. Possible values are:

+ 1 Matrix is structurally singular. The cardinality of the matching is less than n.

+ 2 The returned scaling factors are large and may cause overflow when used to scale the matrix (job=5, only).

2.7 The derived data types

Two derived data types are employed from the package. For each problem, the user must employ derived types defined
by the module to declare structures for controlling the operation of the routine and returning information.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 4

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

HSL C interface HSL MC64

2.8 The control derived data type

The derived data type mc64 control is used to control the action. The components, which are automatically given
default by a call to mc64 default control, are:

int lp is used as the Fortran output stream for error messages. If it is negative, these messages will be suppressed.
The default value is 6 (stdout).

int wp is used as the Fortran output stream for warning messages. If it is negative, these messages will be suppressed.
The default value is 6 (stdout).

int sp is used as the output stream for diagnostic messages. If it is negative, these messages will be suppressed. The
default value is -1.

int ldiag is used to control the amount of informational output which is required. No informational output will
occur if ldiag ≤ 0. The levels are:

<1 No messages are output.

1 Only error messages are output.

2 Error and warning messages output.

3 As for 2 plus scalar parameters, the first 10 entries of array parameters, and the control parameters on the
first entry to mc64 matching.

>3 All data will be printed on entry and exit.

The default is ldiag = 2.

int checking is used by mc64 matching to specify whether the input data is checked for out-of-range indices and
duplicates. This will be done if checking is set to zero. These checks will not be performed if checking is
set to any other value. mc64 matching will run faster without the checking but, if either out-of-range indices or
duplicates are present, it may fail so the user must be sure of the data before changing the default. If the user
has already performed checking or conversion using HSL MC69 this option is redundant and should be disabled.
The default value is 0.

2.9 The derived data type for holding information

The derived data type mc64 info is used to hold information from the execution of mc64 matching. The components
are:

int flag is used as an error/warning flag. Negative values indicate a fatal error and positive values are associated
with a warning. Details in Section 2.6.

int more provides further information in the case of an error, see Section 2.6.

int strucrank gives the number of entries that can be placed on the diagonal (the structural rank).

int stat is set, in the case of the failure of an allocate or deallocate statement, to the value of the Fortran stat
parameter.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 5

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

HSL MC64 C interface HSL

3 GENERAL INFORMATION

Input/output: Output is provided under the control of control.ldiag. If a non-negative value is set in control.lp,
control.wp, or control.sp, then error, warning or diagnostic information will be printed to the corresponding
unit number, respectively. However if a value is negative, printing is suppressed.

Restrictions: m≥n, n≥1.

4 METHOD

The algorithms used in the code and a discussion of its performance are given in detail in the paper [4], and we give
only a very brief summary here. Earlier work on these codes and a study of their use in solving systems by both
iterative and direct methods is given in [3].

The algorithm that is used for job = 1 is MC21, a depth-first search algorithm with look-ahead technique [2].

The algorithm that is used for job = 2 solves a bottleneck bipartite matching problem. The algorithm starts with
a partial matching and extends this by repeatedly searching the bipartite graph corresponding to the matrix for a path
from an unmatched column node to any unmatched row node and for which the smallest weight of any edge in this
path is maximal.

The algorithm for job = 3 is based on repeated applications of an MC21 type algorithm to matrices Ae obtained
from the original m× n matrix A by deleting those entries from A that are below a certain threshold value e. If a
column permutation of cardinality n exists for Ae, the threshold value e is increased; otherwise, e is decreased. This
is repeated until e is such that a maximum matching of size n exists for matrix Ae, but not for Ae′ , where e′ > e. This
algorithm is described in detail in [3].

The algorithm that is used for job = 4 and 5 solves a weighted bipartite matching problem. The algorithm starts
with a partial matching and extends this by repeatedly searching the corresponding bipartite graph for a path from
an unmatched column node to any unmatched row node whose length is shortest. These paths are found using an
algorithm similar to that of Dijkstra [1].

If the input matrix is symmetric, then the matrix is first expanded using MC34 before calling mc64. A symmetric
permutation will be returned which means that any matching entries that are off-diagonal in the original matrix will not
be permuted to the diagonal. The scaling, if requested, is set to the square root of the product of the row and column
scaling computed by mc64 and will maintain the property that there is at least one entry in every row and column of
the scaled matrix with absolute value one and all other entries have modulus less than or equal to one.

If the matrix is symmetric, structurally singular and job = 5, a partial matching representing a non-singular
submatrix of maximum rank will be returned. The scaling, if requested, is set as for the non-singular case on this
submatrix. For unmatched rows and columns, it is set such that

si = log
1

maxk∈index(Ā) |aiksk|
with the convention

1
0
= 1.

where Ā is the non-singular submatrix of maximum rank.

If the matrix is rectangular, the permuted matrix will have matching entries in the n positions

a(permi(i), permc(i)), i = 1, ...n

and the scaled matrix will have at least one entry of modulus one in each column and row with no entries of modulus
greater than one.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

HSL C interface HSL MC64

References

[1] Dijkstra, E. W. A note on two problems in connection with graphs. Numerische Mathematik 1, 269-271, 1959.

[2] Duff, I. S. Algorithm 575. Permutations for a zero-free diagonal. ACM Trans Math Softw. 7, 387-390, 1981.

[3] Duff, I. S. and Koster, J. The design and use of algorithms for permuting large entries to the diagonal of sparse
matrices. SIAM J Matrix Analysis and Applications 20 (4), 889-901, 1999.

[4] Duff, I. S. and Koster, J. On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM J
Matrix Analysis and Applications 22 (4), 973-996, 2001.

5 EXAMPLE OF USE

The following program reads sparse matrices by columns and calls HSL MC64 to compute a permutation and scaling.
It prints the permutation, the scaling and the scaled matrix.

/* hsl_mc64ds.c */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "hsl_mc64d.h"

int main(void) {
struct mc64_control control;
struct mc64_info info;

int matrix_type;
int *ptr, *row;
double *val;

int *perm;
int eye, i, j, jay, job, k, kase, m, n, ne;

double *scale, *a;

for(kase=1; kase<=3; kase++) {
/* KASE = 1 ... square matrix
* KASE = 2 ... rectangular matrix
* KASE = 3 ... symmetric matrix */

switch(kase) {
case 1:

printf("Square matrix\n");
matrix_type = 2;
break;

case 2:
printf("\n\nRectangular matrix\n");
matrix_type = 1;
break;

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 7

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

HSL MC64 C interface HSL

case 3:
printf("\n\nSymmetric matrix\n");
matrix_type = 4;
break;

}

/* Read matrix order and number of entries */
scanf("%d %d %d", &m, &n, &ne);

/* Allocate arrays of appropriate sizes */
ptr = (int *) malloc((n+1)*sizeof(int));
row = (int *) malloc(ne*sizeof(int));
val = (double *) malloc(ne*sizeof(double));
perm = (int *) malloc((m+n)*sizeof(int));
scale = (double *) malloc((m+n)*sizeof(double));
a = (double *) malloc(m*n*sizeof(double));

/* Read matrix and right-hand side */
for(i=0; i<n+1; i++) scanf("%d", &ptr[i]);
for(i=0; i<ne; i++) scanf("%d", &row[i]);
for(i=0; i<ne; i++) scanf("%lf", &val[i]);

/* Initialise control */
mc64_default_control(&control);

/* Get matching */
job = 5;
mc64_matching(job,matrix_type,m,n,ptr,row,val,&control,&info,perm,scale);
if(info.flag<0) {

printf("Failure of mc64_matching with info.flag=%d", info.flag);
free(ptr); free(row); free(val); free(perm); free(scale); free(a);
return 1;

}

/* Print permutations */
printf("Row permutation\n");
for(i=0; i<m; i++) printf("%8d", perm[i]);
printf("\nColumn permutation\n");
for(i=m;i<m+n;i++) printf("%8d", perm[i]);
if(matrix_type>=3) {

/* Print symmetric scaling */
printf("\nSymmetric scaling\n");
for(i=0;i<n;i++) printf(" %lf", exp(scale[i]));

} else {
/* Print row scaling */
printf("\nRow scaling\n");
for(i=0;i<m;i++) printf(" %lf", exp(scale[i]));
/* Print column scaling */
printf("\nColumn scaling\n");

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

HSL C interface HSL MC64

for(i=m;i<m+n;i++) printf(" %lf", exp(scale[i]));
}
printf("\n");

/* Scale matrix and put scaled and permuted entries in full array */
for(i=0; i<m*n; i++) a[i] = 0.0;
for(j=0; j<n; j++) {

/* EYE and JAY are indices in permuted matrix */
jay = abs(perm[m+j]);
for(k=ptr[j]; k<ptr[j+1]; k++) {

i = row[k];
eye = abs(perm[i]);
/* Scale and permute the matrix */
a[jay*m+eye] = exp(scale[i])*val[k]*exp(scale[m+j]);
/* Set symmetric counterpart if appropriate */
if (matrix_type>=3) a[eye*m+jay] = a[jay*m+eye];

}
}

/* Write out scaled matrix */
printf("Scaled matrix\n");
for(i=0; i<m; i++) {

for(j=0; j<n; j++) {
printf(" %lf", a[j*m+i]);

}
printf("\n");

}

free(ptr); free(row); free(val); free(perm); free(scale); free(a);
}

return 0;
}

with the following data

3 3 5
0 2 4 5
1 2 1 2 0
8.0 3.0 2.0 1.0 4.0
3 2 6
0 3 6
0 1 2 0 1 2
5.0 2.0 1.0 1.0 3.0 4.0
3 3 4
0 1 3 4
1 1 2 2
2.0 1.0 1.0 4.0

This produces the following output:

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 9

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

HSL MC64 C interface HSL

Square matrix
Row permutation

0 1 2
Column permutation

1 2 0
Row scaling
1.000000 1.000000 2.000000

Column scaling
0.125000 0.500000 0.250000

Scaled matrix
1.000000 0.000000 0.000000
0.000000 1.000000 1.000000
0.000000 0.750000 1.000000

Rectangular matrix
Row permutation

0 1 -2
Column permutation

0 1
Row scaling
1.000000 1.333333 1.000000

Column scaling
0.200000 0.250000

Scaled matrix
1.000000 0.250000
0.533333 1.000000
0.200000 1.000000

Symmetric matrix
Row permutation

1 0 2
Column permutation

1 0 2
Symmetric scaling
0.707107 0.707107 0.500000

Scaled matrix
0.500000 1.000000 0.353553
1.000000 0.000000 0.000000
0.353553 0.000000 1.000000

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 10

HSL MC64 v2.4.3— C interface
Documentation date: November 15, 2023

