
HSL MI32
PACKAGE SPECIFICATION HSL

1 SUMMARY

This routine uses the MINRES method to solve the n× n symmetric but possibly indefinite linear system Ax =
b, optionally using preconditioning. If M = PPT is the preconditioning matrix, the routine actually solves the
preconditioned system

Āx̄ = b̄,
with Ā = PAPT and b̄ = Pb and recovers the solution x = PT x̄. Reverse communication is used for preconditioning
operations and matrix-vector products of the form Az.

ATTRIBUTES — Version: 1.1.0 (20 March 2023). Interfaces: Fortran Types: Real (single, double). Original
date: April 2015. Origin: T. Rees, Rutherford Appleton Laboratory. Language: Fortran 95, plus allocatable dummy
arguments and allocatable components of derived types.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

Access to the package requires a USE statement

Single precision version
USE HSL MI32 single

Double precision version
USE HSL MI32 double

If it is required to use both modules at the same time, then the derived types (Section 2.4) must be renamed in one of
the USE statements.
The following procedures are available to the user:

mi32 minres is called repeatedly to solve the system using a reverse communication interface. On each return, the
user must provide additional information and, if necessary, recall the subroutine.

mi32 finalize deallocates array components of the private derived data type (allocated by mi32 minres), and
should be called at the end of the solution process.

2.2 The derived data types

For each problem, the user must employ the derived types defined by the module to declare scalars of the types
mi32 keep, mi32 control, and mi32 info.

The following pseudo-code illustrates this.

use hsl_mi32_double
...
type(mi32_keep) :: keep
type(mi32_control) :: control
type(mi32_info) :: info

The components of mi32 control and mi32 info are explained in Section 2.4.1 and 2.4.2. The components of
mi32 keep are priavte and used to pass data between calls to the subroutines.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 1

HSL MI32 v1.1.0
Documentation date: May 30, 2023

HSL MI32 HSL

2.3 Argument lists and calling sequences

2.3.1 Integer, real and package types

INTEGER denotes default INTEGER.
REAL denotes default real if the single precision version is being used, and double precision real if the double precision
version is being used.
We use the term package type to mean default real if the single precision version is being used, and double precision
real for the double precision version.

2.3.2 The linear system solution subroutine

The linear system solution algorithm uses a reverse communication interface and must be called repeatedly (based on
the value of action) as follows:

call mi32_minres(action, n, X, V_in, V_out, keep, control, info)

action is a scalar INTENT(INOUT) argument of type INTEGER that is used for reverse communication. On the first
call, action must be set to 1. On each subsequent return it specifies the action the user must perform as follows:
<0 : An error has occured, see Section 2.5 for details.

0 : MINRES has sucessfully converged to a solution that has been returned as the vector X.

2 : The user must perform the preconditioning operation

y := PPT z,

where PPT is the preconditioning matrix, and recall mi32 minres. The vector z is available as the
first n components of the array V out, and y must be placed in V in. No argument except V in
should be altered before recalling mi32 minres.

3 : The user must perform the matrix-vector product

y := Az

and recall mi32 minres. The vector z is available as the first n components of the array V out, and y
must be placed in V in. No argument except V in should be altered before recalling mi32 minres.

4 : The user should test for convergence. This value will only occur when the user has opted to test
convergence by setting control%own stopping rule to .TRUE.. If the user does not wish to test for
convergence (we do not recommend the user tests for convergence each time action= 4 is returned)
or if convergence has not been achieved, the user must recall mi32 minres without changing any of
the arguments.

n is a scalar INTENT(IN) argument of type INTEGER that must be set to the number of unknowns, n. Restriction:
n>0.

X is an array INTENT(INOUT) argument of dimension n and package type that holds an estimate of the solution x of
the linear system. On initial entry (action=1), X must contain an estimate of the solution. On exit, X contains
the current best estimate of the solution.

V in is an array INTENT(INOUT) argument of dimension n and package type that is used to pass information to
mi32 minres. The required content of the array is under the control of the parameter action (see above). On
initial entry (action=1), V in must contain the residual Ax−b.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 2

HSL MI32 v1.1.0
Documentation date: May 30, 2023

HSL HSL MI32

V out is a one-dimensional POINTER array of package type that is used to pass information from mi32 minres. The
actual content of the array depends on the value of the parameter action (see above). Its allocation status and
value must not be altered by the user.

keep is a scalar INTENT(INOUT) argument of type mi32 keep. It is used to hold data about the system being solved.

control is a scalar INTENT(IN) argument of type mi32 control.

info is a scalar INTENT(INOUT) argument of type mi32 info.

2.3.3 The termination subroutine

Pointer arrays holding private data are deallocated as follows:

call mi32_finalize(keep)

keep is a scalar INTENT(INOUT) argument of type mi32 keep exactly as for mi32 minres. On exit, its array
components will have been deallocated.

2.4 The derived types

2.4.1 The derived data type for holding control parameters

The derived data type mi32 control is used to hold controlling data. The components, which are automatically given
default values in the definition of the type, are:

out is a scalar variable of type default INTEGER that holds the Fortran unit for diagnostic printing. Printing is
suppressed if out< 0. The default is -1.

error is a scalar variable of type default INTEGER that holds the Fortran unit for error messages. Printing of error
messages is suppressed if error≤ 0. The default is 6.

itmax is a scalar variable of type default INTEGER that holds the maximum number of iterations that will be allowed
in mi32 minres. If itmax is set to a negative number, it will be reset by mi32 minres to n+1. The default is -1.

conv test norm is a scalar variable of type default INTEGER that allows the user to select whether the algorithm
tests for convergence in the M-norm (1) or the two-norm (2). If conv test norm = 2, then four additional
vectors of length n will be stored. In general, the choice conv test norm = 2 will require a greater number of
iterations, and each iteration will be more expensive as we perform an extra inner product and two additional
vector additions per iteration. The default is 1. Restriction: conv test norm = 1 or 2.

own stopping rule is a scalar variable of type default LOGICAL that is set .TRUE. if the user intends to provide the
stopping rule and .FALSE. otherwise. The default is .false..

precondition is a scalar variable of type default LOGICAL that is set .TRUE. if the user intends to provide a
preconditioner and .FALSE. otherwise. The default is .true..

stop relative and stop absolute are scalar variables of package type that holds the relative and absolute convergence
tolerances (see Section 4). If own stopping rule is .TRUE., stop relative and stop absolute are not
accessed by MI32. Otherwise, the computed solution x is accepted by mi32 minres if ‖Ax− b‖? is less
than or equal to max(‖Ax0− b‖? ∗ stop relative,stop absolute), where x0 is the initial estimate of the
solution. ‖ · ‖? denotes the norm selected by the control parameter conv test norm. The default values are
stop relative = SQRT(EPSILON) and stop absolute = 0.0.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL MI32 v1.1.0
Documentation date: May 30, 2023

HSL MI32 HSL

2.4.2 The derived data type for informational parameters

The derived data type mi32 info is used to hold parameters that give information about the progress and needs of the
algorithm. The components of mi32 info are:

rnorm is a scalar variable of package type that holds the two norm of the residual, ||Ax−b||?, where ‖ · ‖? denotes
the norm chosen by the control parameter control test norm.

iter is a scalar variable of type default INTEGER that holds the current iteration count.

st is a scalar variable of type default INTEGER that gives the status of the most recent array allocation.

2.5 Warning and error messages

A negative value of action on exit from mi32 minres indicates that an error has occurred. No further calls should be
made until the problem has been resolved. Possible values are:

−1. The input parameter n is not positive.

−2. More than control%itmax iterations have been performed without obtaining convergence.

−3. The matrix A appears to be singular and the system inconsistent.

−4. An array allocation has failed. A message indicating the offending array is written on unit control%error and
the returned allocation status is given by
info%st.

−5. A value of control%conv test norm other than 1 or 2 has been supplied.

2.6 Information printed

If control%out is positive, information about the progress of the algorithm will be printed on unit control%out. A
one-line summary of each iteration will be given containing the iteration number, the norm of the residual, the latest
diagonal and off-diagonal elements in the Lanczos tridiagonal matrix (see Section 2.4.2) and a flag indicating the pivot
type used when factorizing this matrix.

3 GENERAL INFORMATION

Input/output: Output is under control of the arguments control%error and control%out.

Restrictions: n> 0.

4 METHOD

The method is iterative. Starting with the vector (Ax0−b)/‖PT (Ax0−b)‖2, a matrix of Lanczos vectors is built one
column at a time so that the k-th column is generated during iteration k. The resulting n×k matrix Qk has the property
that

AQk = QkTk + γk+1
[
0 · · · 0 vk+1

]
,

or, equivalently, QT
k AQk = Tk, where Tk is tridiagonal. An approximation to the required solution may then be

expressed formally as xk+1 = x0−Qkyk, where

yk = arg min‖‖r0‖2e1− T̂k+1‖2.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 4

HSL MI32 v1.1.0
Documentation date: May 30, 2023

HSL HSL MI32

Here T̂k+1 ∈ R(k+1)×k is formed by appending the row
[
0 · · · 0 γk+1

]
to Tk, and e1 is the first unit vector. The

MINRES algorithm implicitly solves this least squares problem using Givens rotations.
At the kth iteration MINRES finds the vector xk ∈ P

(
x0 + span

{
AMr0,(AM)2r0, . . . ,(AM)k−1r0

})
that minimizes

‖Axk−b‖M . If MINRES is used without a preconditioner we therefore have that the solution in the Krylov subspace
with the minimal residual in the two-norm is found.

The aim of preconditioning is to accelerate the convergence of the method by clustering the eigenvalues of the
preconditioned matrix Ā around a small number of distinct values. If A is positive definite, this is often achieved by
choosing PPT ≈ A−1. When A is indefinite, such a choice will not be possible, and the best that can be hoped for is
that the eigenvalues of Ā cluster around one positive and one negative value.
References
Paige, C. C., & Saunders, M. A. (1975). Solution of sparse indefinite systems of linear equations. SIAM Journal on
Numerical Analysis, 12 (4), 617-629.

5 EXAMPLE OF USE

Suppose we wish to solve the linear system

1 1
2 1

3 1
4 1

5 1
1

1
1

1
1





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10


=



2
3
4
5
6
1
1
1
1
1


.

The coefficient matrix is indefinite, and we choose to precondition with the positive definite matrix

1
1/2

1/3
1/4

1/5
1

1
1

1
1


.

We start from x = 0. We may use the following code:

PROGRAM HSL_MI32_EXAMPLE
USE HSL_MI32_DOUBLE
IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0)
INTEGER, PARAMETER :: n = 10

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 5

HSL MI32 v1.1.0
Documentation date: May 30, 2023

HSL MI32 HSL

REAL(wp), DIMENSION(n) :: X
REAL(wp), DIMENSION(n) :: V_in
REAL(wp), POINTER, DIMENSION(:) :: V_out
TYPE(MI32_KEEP) :: keep
TYPE(MI32_CONTROL) :: control
TYPE(MI32_INFO) :: info
INTEGER :: i, action

X = 0.0_wp ! Set the initial point
DO i = 1, 5 ! Set the initial residual

V_in(i) = - i - 1
END DO
V_in(6 : n) = -1
action = 1
DO ! Solve the system

CALL MI32_MINRES(action, n, X, V_in, V_out, keep, control, info)
SELECT CASE(action)
CASE(2) ! Use the preconditioner

DO i = 1, 5
V_in(i) = V_out(i) / i

END DO
V_in(6 : n) = V_out(6 : n)

CASE(3) ! Form the matrix-vector product
DO i = 1, 5

V_in(i) = i * V_out(i) + V_out(i + 5)
END DO
V_in(6 : n) = V_out(: 5)

CASE DEFAULT
EXIT

END SELECT
END DO
DO i = 1, 5 ! Compute the final residual

V_in(i) = i * X(i) + X(i + 5) - i - 1
END DO
V_in(6 : n) = X(: 5) - 1
WRITE(6, "(/, ’ Output status = ’, I6, &

& ’ norm of final residual = ’, ES9.1)") &
action, SQRT(DOT_PRODUCT(V_in, V_in))

WRITE(6, "(/, ’ final x = ’, //, (5ES12.4))") X
CALL MI32_FINALIZE(keep) ! Deallocate internal arrays

END PROGRAM HSL_MI32_EXAMPLE

This produces the following output:

Output status = 0 norm of final residual = 1.3E-14

final x =

1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL MI32 v1.1.0
Documentation date: May 30, 2023

HSL HSL MI32

1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 7

HSL MI32 v1.1.0
Documentation date: May 30, 2023

