
HSL_MP48
PACKAGE SPECIFICATION HSL

1 SUMMARY

The module HSL_MP48 solves sets of n × n unsymmetric linear systems of equations Ax = b, in parallel using
Gaussian elimination. The matrix A must have been preordered to singly-bordered block-diagonal form

A C11 1
A C22 2 ·

A CNN N

MPI is used for message passing.

A partial LU decomposition is performed on each of the submatrices (A C) separately. Once all possiblell l

eliminations have been performed, for each submatrix there remains a Schur complement matrix F . The variablesl

that remain are called interface variables and the interface matrix F is formed by summing the matrices F . Gaussianl

elimination is used to factorize F, using the HSL sparse direct solver MA48. Block forward elimination and back
substitution completes the solution.

The user’s matrix data may optionally be held in unformatted sequential files. In addition, L and U factors for the
submatrices may optionally be written to sequential files. This reduces main memory requirements when the number
N of submatrices is greater than the number of processes used.

The HSL package HSL_MC66 (included with this package) may be used for preordering the matrix to
singly-bordered block-diagonal form.

ATTRIBUTES — Version: 2.1.1. (16th September 2024) Types: Real (single, double). Calls: HSL_MP01, KB08,
MA48, MA52, MC46 and the BLAS routines I_AMAX, _AXPY, _SCAL, _SWAP, _GEMV, _TPSV, _GEMM, _TRSM. _TRSV.
Remark: HSL_MC66 may be used for preordering. Language: Fortran 95 + TR 15581 (allocatable components).
Original date: March 2003. Origin: I.S. Duff and J.A. Scott, Rutherford Appleton Laboratory.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

The module HSL_MP48 has six separate phases:

(1) Initialize

(2) Preliminary analyse

(3) Analyse

(4) Factorize

(5) Solve

(6) Finalize

Prior to calling the initialize phase, the user must choose the number of processes and must initialize MPI by calling
MPI_INIT on each process. The user must also define an MPI communicator for the package. The communicator
defines the set of processes to be used by MP48. The processes have rank 0, 1, 2,... The host is the process with rank
zero. The host performs the initial checking of the data, distributes data to the remaining processes, collects computed
data from the processes, factorizes and solves the interface problem, and generally overseas the computation. With
the other processes, the host (optionally) participates in generating the partial LU decompositions of the submatrices.

Each phase must then be called in order by each process in the communicator. The user may either do this by

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 1 Documentation date: 16th September 2024

HSL_MP48 HSL

calling each phase from his or her calling program or can use the option of making a single call that initiates calls to
each phase in turn. Before calling each phase, the user must have completed all other tasks that he or she was
performing with the defined communicator (and with any other communicator that overlaps the MP48 communicator).
The calling sequence is illustrated by the simple example given in Section 5.

The initialize phase gives default values to all control parameters. The preliminary analyse phase computes lists of
border columns (interface variables) and assigns each submatrix to a processor. The analyse phase then prepares the
data for factorization, choosing pivot sequences for each submatrix. During the factorize phase, the matrix factors are
generated. The user may then solve for one or more right-hand sides by repeatedly calling the solve phase. The
finalize phase deallocates all arrays that have been allocated by the package. The user may factorize more than one
matrix at the same time by running more than one instance of the package; an instance of the package is terminated by
calling the finalize phase. After the finalize phase and once the user has completed any other calls to MPI routines he
or she wishes to make, the user should call MPI_FINALIZE to terminate the use of MPI.

Access to the module requires a USE statement and the user must declare a structure data of type MP48_DATA
defined by the module. HSL_MP48 has a single user-callable subroutine MP48A/AD with a single parameter data of
type MP48_DATA. If the user wishes to run more than one instance of the module at the same time, a separate
parameter of type MP48_DATA is needed for each instance.

The parameter data has many components. In the following sections, we describe the components of interest to the
user. In Section 2.2, we describe the components that must be set by the user and that contain the solution vector, in
Section 2.3 we describe the components that control the action, and in Section 2.4 we describe the components that
hold information of potential interest to the user.

The following pseudocode illustrates how MP48A/AD must be used.

Single precision version

USE HSL_MP48_SINGLE
...
INTEGER ERCODE
TYPE (MP48_DATA) :: data
...
CALL MPI_INIT(ERCODE)
...

! Set components of data
...
CALL MP48A (data)
...
CALL MPI_FINALIZE(ERCODE)

Double precision version

USE HSL_MP48_DOUBLE
...
INTEGER ERCODE
TYPE (MP48_DATA) :: data
...
CALL MPI_INIT(ERCODE)
...

! Set components of data
...
CALL MP48AD (data)
...
CALL MPI_FINALIZE(ERCODE)

In HSL_MP48_SINGLE, with the exception of wall clock timings, all reals are default reals. Wall clock timings (see

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 2 Documentation date: 16th September 2024

HSL HSL_MP48

Section) are measured using MPI_WTIME and are double precision reals. In HSL_MP48_DOUBLE, all reals are double
precision reals. In both modules, all integers are default integers and all characters are default characters.

2.2 Input and output components

Prior to the first call to MP48A/AD for the current instance, the user must initialize the following component of
data:

data%COMM is an INTEGER scalar that must hold an MPI communicator. data%COMM must be initialized prior to the
first call to MP48A/AD to define the set of processes to be used by MP48. Before each phase is called, the user
must have completed all tasks he or she was performing that involved data%COMM (or involved any other
communicator that overlaps data%COMM). data%COMM is not altered. Note that the code may be run using a
single process.

For each call to MP48A/AD, a job parameter is needed. This parameter determines the phase of the package to be
performed.

data%JOB is an INTEGER scalar that must be initialized on all processes within the communicator before each call to
MP48A/AD. It must be given the same value on all processes. It is not altered.

JOB = 1 initializes an instance of the module. A call with JOB = 1 must be made before any other calls to the
module. On exit, the components of data that control the action contain default values. If the user
wishes to use values other than the defaults, the corresponding components of data should be reset
after the call with JOB = 1. Full details of the control components of data are given in Section 2.3.

JOB = 2 checks the user’s integer data (see Section 2.2.1), generates lists of border columns, renumbers the
variables in each submatrix and, optionally, allocates submatrices to processes (the user may choose
how to allocate the submatrices; see data%ICNTL(10) in Section 2.3).

JOB = 3. For each submatrix (A C), permutations P and Q suitable for the partial LU decomposition arell l l l

computed. P and Q are chosen to preserve sparsity and control numerical stability. Packed storage isl l

used until a density threshold is reached, from which point full storage is used (see data%CNTL(1) in
section 2.3). There is an option for dropping small entries from the factorization (see data%CNTL(3)
and data%CNTL(4) in Section 2.3). A call with JOB = 3 must be preceded by a call with JOB = 2.

JOB = 4 uses the information from the call with JOB = 3 to generate the partial L and U factors for the
submatrices and then uses MA48 to form the L and U factors for the interface problem. The matrices Pl

are altered if necessary for numerical stability, but the matrices Q are not altered. An option exists forl

subsequent calls for matrices with the same sparsity pattern (see Section 2.2.4, parameter
data%FACT_JOB). A call with JOB = 4 must be preceded by a call with JOB = 3.

JOB = 5 uses the factors produced by a call with JOB = 4 to solve systems of the form Ax = b. A call with
JOB = 5 must be preceded by a call with JOB = 4 but several calls with JOB = 5 may follow a single call
with JOB=4.

JOB = 6 deallocates all arrays that have been allocated by the module and, optionally, deletes all sequential
files that have been used to hold the matrix factors. A call with JOB = 6 should be made after all other
calls for the current instance are complete. Note that components of data that are allocated by the user
are not deallocated.

In addition, the following values of data%JOB may be used to combine one or more of the above calls.

JOB = 23 performs JOB = 2 followed by JOB = 3.

JOB = 24 performs JOB = 2 followed by JOB = 3 and JOB = 4 (combines analyse and factorize calls).

JOB = 25 performs JOB = 2, followed by JOB = 3, JOB = 4, and JOB = 5 (combines analyse, factorize, and
solve calls).

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 3 Documentation date: 16th September 2024

HSL_MP48 HSL

2.2.1 Input components for data%JOB = 2 (and data%JOB = 23, 24, 25)

Prior to a call with data%JOB = 2 (or data%JOB = 23, 24, 25), the following components must be set by the user
on the host:

data%NBLOCK is an INTEGER scalar that must be set to the number N of submatrices. This component is not altered.
Restriction: data%NBLOCK>1.

data%NEQ is an INTEGER scalar that must be set to n the order of A. This component is not altered. Restriction:
data%NEQ ≥ data%NBLOCK.

data%NEQSB is an INTEGER rank-1 allocatable array that must be allocated by the user with size data%NBLOCK. On
entry, data%NEQSB(L) must hold the number of rows in the L-th submatrix (L = 1, 2,..., data%NBLOCK). This
component is not altered. Restriction: data%NEQSB(:)>0.

data%EQVAR is an INTEGER rank-1 allocatable array that must be allocated by the user and set to contain lists of the
variable indices in each of the rows of A. The variable indices for row 1 must precede those for the row 2, and
so on. Within a row, the variable indices may be in any order. If variable indices less than 1 or greater than
data%NEQ are found, the computation terminates with an error. Duplicate indices within a row are permitted if
data%ICNTL(9) = 0 (their values will be summed during the data%JOB = 3 call). This component is altered.

data%EQPTR is an INTEGER rank-1 allocatable array that must be allocated wit size at least data%NEQ+1.
data%EQPTR(I) must contain the position in data%EQVAR of the first entry in the I-th row of A (I = 1, 2,...,
data%NEQ), and data%EQPTR(data%NEQ+1) must be set to the position after the last entry in the last row.
There must be no null rows. This component is not altered on the host.

Additionally, the following component must be allocated and set by the user if the control component
data%ICNTL(10) is not equal to 0 or 1.

data%INV_LIST is an INTEGER rank-1 allocatable array that must be allocate with size at least data%NBLOCK. On
entry, data%INV_LIST(L) must hold the rank of the process that is to factorize submatrix L (L = 1, 2,...,
data%NBLOCK). This component is not altered. Restriction: 0 ≤ data%INV_LIST(:)<data%NPROC-1 (where
data%NPROC is the number of processes, see Section 2.4.1).

2.2.2 Output components for data%JOB = 2 (and data%JOB = 23, 24, 25)

The following components are allocated on each process.

data%INV_LIST is an INTEGER rank-1 allocatable array of size data%NBLOCK On exit, data%INV_LIST(L) holds
the rank of the process that is to factorize submatrix L (L = 1, 2,..., data%NBLOCK).

data%ENTRIES is a rank-1 allocatable array of type default INTEGER of size data%NBLOCK. On exit,
data%ENTRIES(L) holds the number of nonzero entries in submatrix L (L = 1, 2,..., data%NBLOCK).

data%ICOUNT is a rank-1 allocatable array of type default INTEGER of dimension 0:data%NPROC-1. On exit,
data%ICOUNT(IPROC) holds the number of submatrices assigned to process IPROC (IPROC = 0, 1,...,
data%NPROC-1).

data%IBLOCK is a rank-1 allocatable array of type default INTEGER. On exit, on process IPROC, data%IBLOCK(J)
holds the index of the J th submatrix that is to be factorized by the process (J = 1, 2,...,
data%ICOUNT(IPROC)).

2.2.3 Input components for data%JOB = 3 (and data%JOB = 23, 24, 25)

data%NBLOCK, data%NEQ, data%NEQSB, data%EQVAR, data%EQPTR, and data%INV_LIST must be passed
unchanged since the call with data%JOB = 2 and are not altered by a call with data%JOB = 3 unless duplicate entries
are found. If duplicate entries are found and data%ICNTL(9)=0, they are summed and data%EQVAR and
data%EQPTR are altered. The remaining components of data that must be set (on the host only) depend on the value
of the control component data%ICNTL(7).

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 4 Documentation date: 16th September 2024

HSL HSL_MP48

The following component must be allocated and set if data%ICNTL(7)=1 (the default) or 2.

data%VALNAM is a CHARACTER*128 rank-1 allocatable array that must be allocated with size at least data%NBLOCK.
On entry, data%VALNAM(L) must contain the name of the file holding the entries of the rows of A belonging to
submatrix L (L = 1, 2,..., data%NBLOCK). These names must all be different. data%VALNAM is not accessed if
data%ICNTL(7)=3. This component is not altered.

The following component must be allocated and set on the host only if data%ICNTL(7)=3 and on each process if
data%ICNTL(7)=4.

data%VALUES is a rank-1 allocatable array of type default REAL that must be allocated and must contain the entries
of the rows of A. The entries must be in the order given by data%EQVAR. This component is not altered.

The following component must be allocated and set on each process IPROC if data%ICNTL(7)=5.

data%RVAL is a rank-1 allocatable array of type default REAL that must be allocated and must contain the rows of the
submatrices assigned to process IPROC. The entries for submatrix data%IBLOCK(1) must precede those for
data%IBLOCK(2), and so on, and within each submatrix, the entries must be in the order given by
data%EQVAR. The size of data%RVAL on process IPROC must be at least data%ENTRIES(L) where the∑
summation is over the submatrices L assigned to IPROC. This component is not altered.

2.2.4 Input components for data%JOB = 4 (and data%JOB = 24 and 25)

data%NBLOCK, data%NEQ, data%NEQSB, data%EQVAR, data%EQPTR, and data%INV_LIST must be passed
unchanged since the call with data%JOB = 3 and are not altered. In addition, the following component must be set on
the host:

data%FACT_JOB is an INTEGER scalar that must be set by the user to one of the following values:

1 The values of the entries of the matrix A must be unchanged since the call to MP48A/AD with
data%JOB = 3 and no other calls to MP48A/AD may have been made since the data%JOB = 3 call.

2 The values of the entries of the matrix A may have changed since the call to MP48A/AD with data%JOB
= 3. This may be the first call MP48A/AD since the data%JOB = 3 call, or it may follow other calls to
MP48A/AD with data%JOB = 4. Numerical pivoting is performed. This may be the first call since the
call to MP48A/AD with data%JOB = 3, or it may follow other calls with data%JOB = 4 and
data%FACT_JOB = 1 or 2.

3 Fast call for the case where the values of the entries of the matrix A may have changed since a previous
call to MP48A/AD with data%JOB = 4 and data%FACT_JOB = 1 or 2. No numerical pivoting is
performed, which may be numerically unstable if the matrix entries are markedly different from those
of the earlier call. This call is not available when any entries have been dropped (see data%CNTL(3)
and data%CNTL(4) in Section 2.3).

This component is not altered. If data%JOB = 24 or 25, data%FACT_JOB is not accessed (a value equal to 1 is
used). Restriction: data%FACT_JOB = 1, 2, or 3.

The following component must be allocated and set by the user on the host if data%ICNTL(11)<0.

data%FILES is a CHARACTER*128 rank-2 allocatable array that must be allocated with size 2 by data%NBLOCK+1.
On entry, data%FILES(J, L), J = 1, 2, must hold the names of the sequential files for the real and integer factor
data for submatrix L (L = 1, 2,..., data%NBLOCK) and for the interface problem when L = data%NBLOCK+1.
These names must all be different.

2.2.5 Input components for data%JOB = 5 (and data%JOB = 25)

Prior to a call with data%JOB = 5 (and data%JOB = 25) the following components must be set by the user on the
host:

data%B is a REAL rank-1 allocatable array that must be allocated with size at least data%NEQ. On entry, data%B(I)

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 5 Documentation date: 16th September 2024

HSL_MP48 HSL

must be set by the user to the I-th component of the right-hand side of the equations being solved (I = 1, 2,...,
data%NEQ). This component is not altered.

The following component must be allocated by the user on the host if data%ICNTL(13) ≠ 0.

data%X is a REAL rank-1 allocatable array that must be allocated with size at least data%NEQ. data%X need not be set
on entry. This component is altered.

2.2.6 Output components for data%JOB = 5 (and data%JOB = 25)

On a call with data%JOB = 5 (and data%JOB = 25) the following component is used to hold the solution vector, on
the host only.

data%X is a REAL rank-1 allocatable array of size data%NEQ. On exit, on the host data%X(I) holds the I-th
component of the solution (I = 1, 2,..., data%NEQ).

2.3 Control components

On exit from the initial call (data%JOB = 1), the control components of data are set to default values. If the user
wishes to use values other than the defaults, the corresponding components of data should be reset on the host
process after the initial call (on each call with data%JOB>1, the host broadcasts the control parameters to the
remaining processes).

data%ICNTL is a rank-1 INTEGER array of size 20.

ICNTL(1) is the unit number for error messages and has the default value 6. Printing of error messages is
suppressed if ICNTL(1)<0.

ICNTL(2) is the unit number for warning messages and has the default value 6. Printing of warning messages is
suppressed if ICNTL(2)<0.

ICNTL(3) is the unit number for diagnostic printing and has the default value 6. Printing is suppressed if
ICNTL(3)<0.

ICNTL(4) is used to control printing of diagnostic messages (all printing is on the host only). It has default value
1. Possible values are:

≤0 No printing.

1 Error and warning messages only.

2 As 1, plus some additional diagnostic printing.

3 As 2, but timings of parts of the code (elapsed wall clock times in seconds) are also printed.

ICNTL(5) is used to control the full-matrix processing. It has default value 32. Possible values are:

≤0 Level 1 BLAS used.

1 Level 2 BLAS used.

≥2 Level 3 BLAS used by MP48A/AD with data%JOB = 4 (factorize phase), with block column size
ICNTL(5). Level 2 BLAS used by MP48A/AD with data%JOB = 5 (solve phase).

ICNTL(6) is used when a real or an integer array that holds data for the factors is too small. The array is
reallocated with its size increased by at least the factor ICNTL(6). The default value is 2.

ICNTL(7) is used to control how the user wishes to supply the matrix A on a call with data%JOB = 3. The default
value is 1. The options are:

1 The submatrices (A C) are held in unformatted sequential files. The data required by the processll l

with rank IPROC must be readable by that process (IPROC = 0, 1, ..., data%NPROC-1). After a call
with data%JOB = 2, data%INV_LIST(L) holds the rank of the process that is to factorize

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 6 Documentation date: 16th September 2024

HSL HSL_MP48

submatrix L. For each submatrix L to be factorized by process IPROC, there must be an
unformatted sequential file holding the values of the entries in the rows of the submatrices that can
be read by process IPROC. Each process only requires storage for one submatrix at a time. The
entries of the submatrices must be written to the sequential files in the same order as they are held
in data%EQVAR on the data%JOB = 2 call. The name of the file for submatrix L must be given in
data%VALNAM(L) (L = 1, 2, ..., data%NBLOCK). The values of the entries are read during a call
with data%JOB = 3 and reread during the call with data%JOB = 4.

2 As 1, except the host must be able to read all the files. For each submatrix, the data is read by the
host and then passed to the process assigned to that submatrix before the factorization begins. This
requires the host to have more memory and each process must be able to store the data for all the
submatrices assigned to it at once. The values of the entries are read during a call with data%JOB
= 3 and stored for the subsequent factorization.

3 The user must supply the submatrix data in memory on the host using data%VALUES. This option
avoids reading from sequential files although it does involve more data movement between
processes. The values of the entries are read during a call with data%JOB = 3 and stored for the
subsequent factorization.

4 The user must supply all the submatrix data in memory on each process using data%VALUES.
Supplying the data in this way avoids reading from files as well as data movement between
processes. This option is suitable for shared memory machines.

5 On each process, the user must supply the data for each of the submatrices assigned to it in
memory using data%RVAL. Supplying the data in this way avoids reading from files as well as data
movement between processes; the amount of data required to be held on each process is less than
for ICNTL(7)=4 (assuming more than one process is used).

Restriction: ICNTL(7) = 1, 2, 3, 4, or 5.

ICNTL(8) has default value 3. If ICNTL(8) has a positive value, each pivot search in MP48A/AD is limited to a
maximum of ICNTL(8) columns. If ICNTL(8) is set to 0, a full Markowitz search is used to find the best pivot.
This requires extra workspace and is usually only a little slower, but can occasionally be very slow. It may
result in reduced fill-in.

ICNTL(9) controls the action if duplicate entries within a row are found. If ICNTL(9)=0 (the default) and
duplicates are found, the values of duplicates are summed. Otherwise, if duplicates are found, the program
terminates with the error flag -3.

ICNTL(10) is used to control whether the user wishes to decide which process is to factorize which submatrix. If
ICNTL(10)=0 (the default), this choice is made automatically during the preliminary analyse phase
(data%JOB = 2) and the host is involved in the submatrix factorizations. If ICNTL(10)=1, the choice is again
made automatically but (assuming the number of processes is at least 2) the host is not involved in the
submatrix factorizations. This option can be useful in a distributed memory environment for large problems
and/or problems with a relatively large or dense interface. For all other values of ICNTL(10), the user must
choose a process for each submatrix using data%INV_LIST.

ICNTL(11) controls whether or not sequential files are used to hold factor data that is generated during the
computation. If ICNTL(11)=0 (the default), files are not used and the data is held in main memory. Otherwise,
sequential files are used (if one process is to factorize more than one submatrix then using files reduces storage
requirements but the extra I/O involved can increase the overall computational time). If ICNTL(11)>0, the
code automatically names the files and they are written to the current directory. The files for the real and
integer factor data for submatrix 1 are called fact.0001, integ.0001, for submatrix 2 they are fact.0002,
integ.0002, and so on. The files for the real and integer factor data for the interface problem are fact_interf,
integ_interf. If ICNTL(11)<0, the user must supply names for the files in data%FILES (see Section 2.2.4). If
the user wishes to run a second instance of the module before the final call for the first instance (data%JOB = 6)

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 7 Documentation date: 16th September 2024

HSL_MP48 HSL

and wants to use files for the data, data%ICNTL(11) must be set to a negative value and file names provided
by the user in data%FILES.

ICNTL(12) controls whether the user wants the sequential files used to hold the matrix factors to be deleted at the
end of the computation. If ICNTL(12)=0 (the default), when the final call is made to MP48A/AD (data%JOB =
6), the sequential files are deleted. Otherwise, the files are disconnected but not deleted. ICNTL(12) is not used
if ICNTL(11) is equal to 0.

ICNTL(13) controls whether the user allocates the solution vector data%X. If ICNTL(13)=0 (the default), data%X
is allocated by the code on a dataJOB = 5 (or data%JOB = 25) call. Otherwise, data%X must be allocated by
the user on the host prior to a dataJOB = 5 (or data%JOB = 25)call.

ICNTL(14) to ICNTL(20) are not currently used but are set to zero by the call with data%JOB = 1.

data%CNTL is a REAL rank-1 array of size 10.

CNTL(1) has default value 0.5. During each submatrix factorization, MP48A/AD switches to full matrix
processing if the ratio of number of entries in the reduced matrix to the number that it would have as a
full matrix is CNTL(1) or more. A value greater than 1.0 is treated as 1.0 and a value less than 0.0 is
treated as 0.0.

CNTL(2) has default value 0.01 and determines the balance in MP48A/AD between pivoting for sparsity and for
stability, values near zero emphasising sparsity and values near one emphasizing stability. A value
greater than 1.0 is treated as 1.0 and a value less than 0.0 is treated as 0.0.

CNTL(3) has default value zero. If it is set to a positive value, MP48A/AD will drop from the factors any entry
whose modulus is less than CNTL(3). The factorization will then require less storage but will be
inaccurate. A value less than 0.0 is treated as 0.0.

CNTL(4) has default value zero. If MP48A/AD finds a column of the reduced submatrix with entries all of
modulus less than or equal to CNTL(4), all such entries are dropped from the factorization (and
contribute to the count in data%DROP). Every pivot is also required to have absolute value greater than
CNTL(4). A value less than 0.0 is treated as 0.0.

CNTL(5) to CNTL(10) are not currently used but are set to zero by the call with data%JOB = 1.

2.4 Information components

The components of data described in this section are used to hold information that may be of interest to the user.
Some of the information is available on each process and some only on the host.

2.4.1 Information on each process

The following information is significant on each process. The information is available after each call to MP48A/AD.

data%ERROR is an INTEGER scalar that is used as an error and a warning flag. A nonzero value indicates an error has
been detected or a warning has been issued (see Section 2.5). If an error is detected, the information contained
in the other components of data described in this section may be incomplete.

data%NPROC is an INTEGER scalar that is set to the number of processes used by MP48. data%NPROC is the number of
processes associated with the communicator data%COMM and is set by a call within MP48A/AD to
MPI_COMM_SIZE.

data%RANK is an INTEGER scalar that holds the rank of the process in the global communicator data%COMM. The host
is defined to be the process with data%RANK = 0.

2.4.2 Information available on the host

The following information is available only on the host. If an error is detected (see Section 2.5), the information
may be incomplete.

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 8 Documentation date: 16th September 2024

HSL HSL_MP48

Information available on exit from a call with data%JOB = 2 (and data%JOB = 23, 24, 25).

data%BORDER is an INTEGER scalar that holds the total number of columns in the border. If there are any null
columns, they are included in the border.

data%IOSTAT is an INTEGER scalar that holds the Fortran IOSTAT parameter.

data%STAT is an INTEGER scalar that holds the Fortran STAT parameter.

data%TIMEA is a REAL scalar that holds the elapsed wall clock time (in seconds) for the host to generate the list of
border columns. The time is measured using MPI_WTIME.

data%NGUARD is an INTEGER rank-1 allocatable array of size data%NBLOCK. data%NGUARD(L) holds the number of
columns belonging to the border for submatrix L (L = 1, 2,..., data%NBLOCK).

Information available on exit from a call with data%JOB = 3 (and data%JOB = 23, 24, 25).

data%IDUP is an INTEGER scalar that holds the number of duplicate entries that have ben found in A.

data%IOSTAT is an INTEGER scalar that holds Fortran IOSTAT parameter.

data%OPSA is a REAL rank-1 allocatable array of size data%NBLOCK. data%OPSA(L) holds the predicted number of
floating-point operations needed to factorize submatrix L (L = 1, 2,..., data%NBLOCK).

data%STAT is an INTEGER scalar that holds Fortran STAT parameter.

data%TIMEA is a REAL rank-1 allocatable array of size data%NBLOCK. data%TIMEA(L) holds the elapsed wall clock
time (in seconds) for the analyze phase for submatrix L (L = 1, 2,..., data%NBLOCK). The time is measured using
MPI_WTIME.

Information available on exit from a call with data%JOB = 4 (and data%JOB = 24, 25).

data%NINTER is an INTEGER scalar that holds the order of the interface matrix (this will be at least data%BORDER
and may be larger if the problem is singular).

data%INTER_COL is an INTEGER rank-1 array of length data%NINTER that holds the indices of the columns
belonging to the interface matrix.

data%NE_INTER is an INTEGER scalar that holds the number of entries in the interface matrix.

data%EST_RANK is an INTEGER scalar that holds the estimated rank of A.

data%DROP is an INTEGER scalar that holds the total number of entries dropped from the data structure.

data%FLOPS is a REAL scalar that holds the total number of floating-point operations performed in factorizing the
matrix.

data%IOSTAT is an INTEGER scalar that holds Fortran IOSTAT parameter.

data%NZ is a REAL scalar that holds the total number of entries in the factors.

data%OPS_MA48 is a REAL scalar that holds the total number of floating-point operations performed in factorizing
the interface matrix.

data%STAT is an INTEGER scalar that holds Fortran STAT parameter.

data%STORINT is a REAL scalar that holds the total integer storage for the factors in INTEGER words.

data%TIME_MA48A is a REAL scalar that holds the elapsed wall clock time (in seconds) for the analyze phase for the
interface problem. The time is measured using MPI_WTIME.

data%TIME_MA48F is a REAL scalar that holds the elapsed wall clock time (in seconds) for the factorize phase for the
interface problem. The time is measured using MPI_WTIME.

data%OPS is a REAL rank-1 allocatable array of size data%NBLOCK. data%OPS(L) holds the number of
floating-point operations performed in factorizing submatrix L (L = 1, 2,..., data%NBLOCK).

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 9 Documentation date: 16th September 2024

HSL_MP48 HSL

data%STORAGE is a REAL rank-2 allocatable array of size 2 by data%NBLOCK. data%STORAGE(1,L) and
data%STORAGE(2,L) hold, respectively, the real and integer storage for the partial factorization of submatrix L
(L = 1, 2,..., data%NBLOCK).

data%TIMEF is a REAL rank-1 allocatable array of size data%NBLOCK. data%TIMEF(L) holds the elapsed wall clock
time (in seconds) for the factorize phase for submatrix L (L = 1, 2,..., data%NBLOCK). The time is measured
using MPI_WTIME.

Information available on exit from a call with data%JOB = 5 (and data%JOB = 25).

data%IOSTAT is an INTEGER scalar that holds Fortran IOSTAT parameter.

data%STAT is an INTEGER scalar that holds Fortran STAT parameter.

data%TIMES is a REAL rank-1 allocatable array of size data%NBLOCK. data%TIMES(L) holds the elapsed wall clock
time (in seconds) for the solve phase for submatrix L (L = 1, 2,..., data%NBLOCK). The time is measured using
MPI_WTIME.

data%TIME_MA48F is a REAL scalar that holds the elapsed wall clock time (in seconds) for the solve phase for the
interface problem. The time is measured using MPI_WTIME.

2.5 Error diagnostics

On successful completion, a call to MP48 will exit with data%ERROR set to 0. Other values for data%ERROR and the
reasons for them are given below.

2.5.1 Error diagnostics for data%JOB = 1

–1 MPI has not been initialized by the user. Immediate return. An error message is printed on the default output
unit.

2.5.2 Error and warning diagnostics for data%JOB = 2 (and data%JOB = 23, 24, 25)

A negative value for data%ERROR is associated with a fatal error. Error messages are output by the host on unit
data%ICNTL(1). Possible negative values are:

–2 Either data%NBLOCK ≤ 1 or data%NBLOCK>data%NEQ.

–4 Either data%EQVAR is not allocated or has been allocated with size less than data%EQPTR(data%NEQ+1)–1.
This error is also returned if one or more variable indices in data%EQVAR lie out of range (less than 1 or greater
than data%NEQ).

–5 Error detected in data%EQPTR. Either data%EQPTR has not been allocated or has been allocated with size less
than data%NEQ+1, or the entries of data%EQPTR are not monotonic increasing (null row).

–6 data%ICNTL(7) out of range (ie. data%ICNTL(7) ≠ 1, 2, 3, 4 or 5).

–7 Either the array data%NEQSB has not been allocated or has been allocated with size less than data%NBLOCK, or
data%NEQSB(L)<1 for one or more of the submatrices L (1 ≤ L ≤ data%NBLOCK).

–9 Either the array data%INV_LIST has not been allocated or has been allocated with size less than
data%NBLOCK, or an entry in data%INV_LIST is out of range (data%ICNTL(10) not equal to 0 or 1).

–11 Error in Fortran ALLOCATE statement. The STAT parameter is returned in data%STAT.

–13 data%JOB does not have the same value on all processes or has an invalid value.

–19 The call follows a call with data%JOB = 6.

2.5.3 Error and warning diagnostics for data%JOB = 3 (and data%JOB = 23, 24, 25)

A negative value for data%ERROR is associated with a fatal error. Error messages are output by the host on unit
data%ICNTL(1). Possible negative values are:

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 10 Documentation date: 16th September 2024

HSL HSL_MP48

–3 Duplicate entries have been found (data%ICNTL(9) ≠ 0). The number of duplicate entries is data%IDUP.

–10 If data%ICNTL(7) = 1 or 2, either data%VALNAM is not allocated or is allocated with size less than
data%NBLOCK. If data%ICNTL(7) = 3 or 4, either data%VALUES is not allocated or is allocated with size less
than data%EQPTR(data%NEQ+1)–1. If data%ICNTL(7) = 5, either data%RVAL is not allocated or is allocated
with incorrect size.

–11 Error in Fortran ALLOCATE statement. The STAT parameter is returned in data%STAT.

–13 data%JOB does not have the same value on all processes or has an invalid value.

–14 Error in Fortran INQUIRE statement. The IOSTAT parameter is returned in data%IOSTAT.

–17 Error in Fortran OPEN statement. The IOSTAT parameter is returned in data%IOSTAT.

–19 An error was returned on a previous call or the call follows a call with data%JOB = 1 (no data%JOB = 2 call) or
follows a call with data%JOB = 6.

–20 Failed to find a unit to which a file could be connected.

Warning messages are associated with positive values of data%ERROR. Warning messages are output by the host on
unit data%ICNTL(2). Possible warnings are:

+1 Duplicate entries have been found (data%ICNTL(9) = 0). The values of such entries are summed. The number
of duplicate entries is data%IDUP.

2.5.4 Error diagnostics for data%JOB = 4 (and data%JOB = 24, 25)

A negative value for data%ERROR is associated with a fatal error. Error messages are output by the host on unit
data%ICNTL(1). Possible values are:

–10 If data%ICNTL(7) = 1 or 2, either data%VALNAM is not allocated or is allocated with size less than
data%NBLOCK. If data%ICNTL(7) = 3 or 4, either data%VALUES is not allocated or is allocated with size less
than data%EQPTR(data%NEQ+1)–1. If data%ICNTL(7) = 5, either data%RVAL is not allocated or is allocated
with incorrect size.

–11 Error in Fortran ALLOCATE statement. The STAT parameter is returned in data%STAT. If the number of
submatrices exceeds the number of processes and the user is not using sequential files (data%ICNTL(11)=0),
it may be possible to avoid this error by rerunning with data%ICNTL(11) ≠ 0. Alternatively, the user may try
running with data%ICNTL(10)=1.

–12 data%FACT_JOB has an invalid value.

–13 data%JOB does not have the same value on all processes or has an invalid value.

–14 Error in Fortran INQUIRE statement. The IOSTAT parameter is returned in data%IOSTAT.

–15 On a call with data%FACT_JOB = 3, either the matrix entries are unsuitable for the pivot sequence chosen on
the preceding data%FACT_JOB = 1 or 2 call or the order and/or the number of nonzero entries in the interface
matrix are not the same as on the earlier call.

–17 Error in Fortran OPEN statement. The IOSTAT parameter is returned in data%IOSTAT.

–19 An error was returned on a previous call or the call was not preceded by a call with data%JOB = 3, or follows
a call with data%JOB = 6.

–20 Failed to find a unit to which a file could be connected.

–21 Interface matrix is structurally rank deficient.

–25 data%FILES is either not allocated or is allocated but with incorrect size (ICNTL(11)<0).

Warning messages are associated with positive values of data%ERROR. Warning messages are output by the host on
unit data%ICNTL(2). Possible warnings are:

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 11 Documentation date: 16th September 2024

HSL_MP48 HSL

+2 The matrix is singular.

2.5.4 Error diagnostics for data%JOB = 5 (and data%JOB = 25)

A negative value for data%ERROR is associated with a fatal error. Error messages are output by the host on unit
data%ICNTL(1). Possible values are:

–11 Error in Fortran ALLOCATE statement. The STAT parameter is returned in data%STAT.

–13 data%JOB does not have the same value on all processes or has an invalid value.

–14 Error in Fortran INQUIRE statement. The IOSTAT parameter is returned in data%IOSTAT.

–17 Error in Fortran OPEN statement. The IOSTAT parameter is returned in data%IOSTAT.

–19 An error was returned on a previous call or the call was not preceded by a call with data%JOB = 4, or follows
a call with data%JOB = 6.

–20 Failed to find a unit to which a file could be connected.

–22 data%B is either not allocated or is allocated but with incorrect size.

–23 data%X is either not allocated or is allocated but with incorrect size (data%ICNTL(13) nonzero only).

2.5.5 Error diagnostics for data%JOB = 6

A negative value for data%ERROR is associated with a fatal error. Error messages are output by host on unit
data%ICNTL(1). Possible values are:

–13 data%JOB does not have the same value on all processes or has an invalid value.

3 GENERAL INFORMATION

3.1 Summary of information.

Other routines called directly: The HSL routines HSL_MP01, KB08, MA48, MA52, MC46. The BLAS routines
ISAMAX/IDAMAX, SAXPY/DAXPY, SSCAL/DSCAL, SSWAP/DSWAP, SGEMV/DGEMV, STPSV/DTPSV,
SGEMM/DGEMM, STRSM/DTRSM. STRSV/DTRSV. In addition, MPI routines are called.

Workspace: Workspace is allocated by the code on each process as required. The amount of workspace needed is
dependent upon how the matrix data is stored (see data%ICNTL(7) in Section 2.3), on whether or not the
generated factors are written to sequential files, and on the assignment of submatrices to processes.

Input/output: The output units for the error and warning messages are data%ICNTL(1) and data%ICNTL(2)
(see Section 2.3). The output unit for diagnostic printing is data%ICNTL(3).

Restrictions:
data%NBLOCK>1,
data%NEQ ≥ data%NBLOCK,
data%NEQSB(:)>0,
0 ≤ data%INV_LIST(:)<data%NPROC (data%ICNTL(10) ≠ 0 or 1),
data%ICNTL(7) = 1, 2, 3, 4, or 5,
data%FACT_JOB = 1, 2 or 3.

Portability: Fortran 95 + TR 15581 (allocatable components) with MPI for message passing.

Changes between Version 1.0.0 and Version 2.0.0:
The addition of HSL_MP01 to HSL has allowed the source form to be changed to free format and means that the user
of no longer needs an INCLUDE line for the MPI constants. All the pointer array components have been changed to
allocatable components, which should be more efficient and avoids any danger of memory leakage.

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 12 Documentation date: 16th September 2024

HSL HSL_MP48

4 METHOD

data%JOB = 1

The control components are given default values.

data%JOB = 2

The input data is first checked for errors. The control components and scalar input components are then broadcast
from the host to all processes. The host process calls MA52A/AD to generate lists of border columns. The submatrices
are shared between the processes. By default, each process is assigned an equal (or nearly equal) number of
submatrices.

data%JOB = 3

Data for each submatrix is sent from the host to its assigned process IPROC. Process IPROC performs the analyse
phase for each of its assigned submatrices using an internal subroutine that is a modified version of the HSL routine
MA50A/AD. The columns in the border are supplied last.

data%JOB = 4

After checking the input data, process IPROC performs the factorize phase for each of its assigned submatrices using
an internal subroutine that is a modified version of the HSL routine MA50B/BD. If data%FACT_JOB = 1, the values of
the entries of the matrix must be unchanged since the call with data%JOB = 3. If data%FACT_JOB = 2, the sparsity
pattern of the matrix must be unchanged but the values may be different; numerical pivoting is incorporated for
stability. If data%FACT_JOB = 3, at least one other call with data%JOB = 4 and data%FACT_JOB = 1 or 2 must
already have been made. In this case, the values of the entries of the matrix may have changed but the pivot sequence
is not modified and so this option could be numerically unstable.

Once all possible eliminations have been done, the Schur complement matrices that remain for each submatrix are
sent to the host. The host assembles the interface matrix as a sparse matrix and uses the HSL routines MA48A/AD and
MA48B/BD to perform analyse and factorize for the interface problem.

data%JOB = 5

For each of its assigned submatrices, process IPROC performs forward elimination using an internal subroutine that is
a modified version of MA50C/CD. The partial solution vectors are sent to the host. Forward elimination and back
substitution for the interface problem is performed by the host using MA48C/CD. The solution for the interface
problem is sent to each process, and each process calls the modified version of MA50C/CD to perform the back
substitution on its submatrices. The final solution is assembled on the host.

data%JOB = 6

Arrays allocated by the code are deallocated, the sequential files used to hold the matrix factors are closed and
(optionally) are deleted.

References

Duff, I. S. and Scott, J. A. (2002). A parallel direct solver for large sparse highly unsymmetric linear systems.
Rutherford Appleton Laboratory Report RAL-TR-2002-033 (available from
www.numerical.rl.ac.uk/reports/reports.html). Also published in ACM Trans. Mathematical Software, 30
(2004), 95-117.

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 13 Documentation date: 16th September 2024

HSL_MP48 HSL

5 EXAMPLE OF USE
We wish to factorize the matrix A given by

1. 2. 1.
1. −1.

A = 2. −2. ,
1. 1.

3. −1.
2. −1. 1. 1.

and solve Ax = b for the right-hand side

6.
1.

b = 0. ·
2.
2.
3.

The following program may be used to solve this problem.
PROGRAM SPEC48_DOUBLE

! Program to illustrate use of MP48.

USE HSL_MP48_DOUBLE
IMPLICIT NONE

TYPE (MP48_DATA) data
INTEGER ERCODE,ST

CALL MPI_INIT(ERCODE)
! Define a communicator for the package

data%COMM = MPI_COMM_WORLD
! Initialize package

data%JOB = 1
CALL MP48AD(data)

! Reset control parameters (if required)
! Read all values on host

data%ICNTL(7) = 3
IF (data%RANK.EQ.0) THEN

OPEN (UNIT=50,FILE='hsl_mp48ds.data')
READ (50,*) data%NEQ,data%NBLOCK,data%NE

! Allocate arrays for matrix data
ALLOCATE(data%NEQSB(1:data%NBLOCK),STAT=ST)
ALLOCATE(data%EQPTR(1:data%NEQ+1),STAT=ST)
ALLOCATE(data%EQVAR(1:data%NE),STAT=ST)
ALLOCATE(data%VALUES(1:data%NE),STAT=ST)
ALLOCATE(data%B(1:data%NEQ),STAT=ST)

! Read matrix data on host.
READ (50,*) data%NEQSB(1:data%NBLOCK)
READ (50,*) data%EQPTR(1:data%NEQ+1)
READ (50,*) data%EQVAR(1:data%NE)
READ (50,*) data%VALUES(1:data%NE)

! Also read right hand side
READ (50,*) data%B(1:data%NEQ)

END IF
CALL MPI_BARRIER(data%COMM,ERCODE)

! Call MP48A/AD (combine analyse/factorize/solve)
data%JOB = 25
CALL MP48AD(data)

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 14 Documentation date: 16th September 2024

HSL HSL_MP48

IF (data%RANK.EQ.0) THEN
IF (data%ERROR.LT.0) THEN
WRITE (6,*) ' Unexpected error return'

ELSE
WRITE (6,'(//A/,6ES11.3)') &

' The solution is: ',data%X(1:data%NEQ)
END IF

END IF

data%JOB = 6
CALL MP48AD(data)
CALL MPI_FINALIZE(ERCODE)
STOP

END PROGRAM SPEC48_DOUBLE

The input data needed is:

6 2 15
3 3
1 4 6 8 10 12 16
1 2 5 6 2 1 5 3 4 4 5 4 3 5 6

1.0 2.0 1.0 -1.0 1.0 2.0 -2.0 1.0 1.0 3.0 -1.0 -1.0 2.0 1.0 1.0
6.0 1.0 0.0 2.0 2.0 3.0

Assuming the code is run on two processes, this produces the following output:

The solution is:
1.000E+00 2.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00

All use is subject to licence. HSL_MP48 v 2.1.1
http://www.hsl.rl.ac.uk/ 15 Documentation date: 16th September 2024

