
MA72
PACKAGE SPECIFICATION HSL

1 SUMMARY

This collection of subroutines, when used in conjunction with the MA62 package, solves symmetric
positive-definite finite-element equations using a multiple front algorithm. It is assumed that the underlying
finite-element mesh has been partitioned into (non-overlapping) subdomains. In the multiple front algorithm, a frontal
method is applied to each subdomain separately.

For example, a mesh could be divided into 4 subdomains A, B, C, D.

A B

C D

The variables that lie on the boundary between 2 or more subdomains are termed interface variables and those that
lie within a subdomain are called internal variables. When the frontal method is applied to a subdomain, the internal
variables can be eliminated but, at the end of the assembly and elimination processes, for each subdomain there
remains a frontal matrix F and a corresponding right-hand side vector (or matrix) c that may be assembled to give ai i

system of the form

Fy = c, F = F , c = c . (1)∑ ∑i i
i i

We call (1) the interface problem. By treating each of the matrices F as an element matrix, (1) may be solved usingi

a frontal method (alternatively, any other solver for symmetric positive definite linear systems may be used to solve
(1)). Once (1) has been solved, back-substitution on each subdomain completes the solution.

The application of the frontal method to each subdomain may be done in parallel. Using multiple fronts can also have
the advantage of requiring less work than applying the frontal method to the whole domain.

MA72 provides routines for generating lists of interface variables, for preserving the partial factorization of a matrix
when the sequence of calls to the frontal solver factorization routine MA62B/BD is incomplete, and for performing
forward elimination or back-substitution on a subdomain.

MA72 uses reverse communication.

The use of HSL routine MC53 to obtain an efficient element ordering in each subdomain is recommended before MA62
and MA72 are used.

For unsymmetric or symmetric indefinite problems, MA52 should be used in conjunction with MA42.

For further details of the multiple front approach, see Duff, I. S. and Scott, J. A. (1994). The use of multiple fronts in
Gaussian elimination. Rutherford Appleton Laboratory, Report RAL-94-040.

ATTRIBUTES — Version: 1.0.0. (12 July 2004) Types: Real (single, double). Calls: MA62. Helpful: MC53.
Language: Fortran 77. Original date: May 1998. Origin: J.A. Scott, Rutherford Appleton Laboratory.

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 1 Documentation date: 30th May 2023

MA72 HSL

2 HOW TO USE THE PACKAGE

2.1 Argument lists and calling sequences.

There are three entries:

(a) The use of MA72A/AD is optional. For each subdomain, MA72A/AD generates a guard element that is, a list of
interface variables. If MA72A/AD is used, it must be called once for each element in the finite-element mesh and
the user must indicate to which subdomain each element belongs. The calls may be made in any order.

(b) If subroutines MA62A/AD and MA62J/JD from the MA62 frontal package are called by the user k times, k calls to
the factorization subroutine MA62B/BD are needed to complete the matrix factorization. If the user makes fewer
than k calls to MA62B/BD, MA72B/BD may be used to preserve the partial factorization. The frontal matrix and
corresponding frontal right-hand side matrix at the point at which the sequence of calls to MA62B/BD was
terminated are returned to the user, together with the partial factorization. If direct access files were being used
by MA62, the partial factorization is written to the direct access files. The routine may only be used if no errors
have been returned from MA62B/BD.

(c) MA72C/CD performs forward elimination or back-substitution on a subdomain of a finite-element mesh. The
routine can only be called after an earlier call to MA72B/BD for the subdomain.

In the multiple front algorithm, the frontal solver analyse routine MA62A/AD is called once for each of the nelt
elements in a subdomain. An extra call to MA62A/AD is then made for the appropriate guard element. Similarly, nelt+1
calls are made to the symbolic factorization routine MA62J/JD. nelt calls are then made to the factorization subroutine
MA62B/BD. Since MA62B/BD expects nelt+1 calls (the number of calls made to MA62A/AD), the factorization after nelt
calls is incomplete. This partial factorization is preserved by calling MA72B/BD. The output from MA72B/BD is in the
form of an element matrix F . In addition, if MA62B/BD was called with a positive number of right-hand sidesi

(NRHSB>0), the corresponding partial solution is output as an element right-hand side matrix C (or vector c for ai i

single right-hand side). For each subdomain there will be one element matrix and, if NRHSB>0, one element
right-hand side matrix.

The interface problem may be solved using the frontal code MA62. Alternatively, the element matrices F may bei

assembled to give a system of the form (2) and any other suitable package for symmetric positive-definite systems
can be used to factor the interface matrix and to solve for the interface variables.

Once the interface problem has been solved, the user should call MA72C/CD for each subdomain to perform the
back-substitution needed to solve for the internal variables. MA72C/CD may also be used to solve for further
right-hand sides. In this case, MA72C/CD is used to perform forward elimination on each subdomain. Using the partial
solution on the subdomains, the user must then solve for the interface variables (using, for example, the frontal solver
subroutine MA62C/CD), and then recall MA72C/CD on each subdomain for the final back-substitution for the internal
variables.

The calling sequence is illustrated in Section 5.

2.1.1 Generation of guard elements

If the user chooses to use MA72A/AD to obtain the guard elements, a call of the following form must be made for
each element in the finite-element mesh. The elements may be presented in any order.

The single precision version

CALL MA72A(ICALL,NVAR,MAXIND,IVAR,TOTELT,NDOMN,IDOMN,NGUARD,LGUARD,
* IGUARD,IW,JCNTL,JNFO)

The double precision version

CALL MA72AD(ICALL,NVAR,MAXIND,IVAR,TOTELT,NDOMN,IDOMN,NGUARD,LGUARD,
* IGUARD,IW,JCNTL,JNFO)

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 2 Documentation date: 30th May 2023

HSL MA72

ICALL is an INTEGER variable that must be set by the user to the number of the call to the subroutine. On the first call
ICALL must be set to 1, on the second call to 2, and so on. This argument is not altered by the routine.

NVAR is an INTEGER variable that must be set by the user to the number of variables in the current element. This
argument is not altered by the routine. Restriction: NVAR ≥ 1.

MAXIND is an INTEGER variable that must be set by the user to be at least as large as the largest integer used to index
a variable in the finite-element mesh. This argument must be unchanged between calls to MA72A/AD and is not
altered by the routine.

IVAR is an INTEGER array of length at least NVAR that must be set by the user to contain the indices of the variables
associated with the current element. This argument is not altered by the routine. Restriction:
1 ≤ IVAR(I) ≤ MAXIND, I = 1, 2,..., NVAR.

TOTELT is an INTEGER variable that must be set by the user to the total number of elements in the finite-element
mesh. This argument must be unchanged between calls to MA72A/AD and is not altered by the routine.
Restriction: TOTELT>1.

NDOMN is an INTEGER variable that must be set by the user to the number of the subdomains that comprise the
finite-element mesh. This argument must be unchanged between calls to MA72A/AD and is not altered by the
routine. Restriction: NDOMN>1.

IDOMN is an INTEGER variable that must be set by the user to the index of the subdomain to which the current element
belongs. This argument is not altered by the routine. Restriction: 1 ≤ IDOMN ≤ NDOMN.

NGUARD is an INTEGER array of length NDOMN that need not be set by the user. On exit from the final call (the call
with ICALL=TOTELT), NGUARD(IDOMN) holds the number of variables in the guard element for subdomain
IDOMN, that is, the number of variables that lie on the interface for subdomain IDOMN (IDOMN = 1, 2,..., NDOMN).
This argument must be unchanged between calls to MA72A/AD.

LGUARD is an INTEGER variable that must be set by the user to the first dimension of the array IGUARD. If the guard
element for subdomain JDOMN has the most variables, LGUARD must be at least NGUARD(JDOMN), but in practice
the user needs to choose a value larger than this. This argument must be unchanged between calls to MA72A/AD
and is not altered by the routine.

IGUARD is an INTEGER array of dimensions LGUARD by NDOMN that need not be set by the user. On exit from the final
call, IGUARD(I,IDOMN), I = 1, 2,..., NGUARD(IDOMN), is a list of the variables in the guard element for
subdomain IDOMN (IDOMN = 1, 2,..., NDOMN). This argument must be unchanged between calls to MA72A/AD.

IW is an INTEGER array of length MAXIND that is used by the routine as workspace. This argument must be
unchanged between calls to MA72A/AD.

JCNTL is an INTEGER array of length 2. JCNTL(1) must be set by the user to the stream number for the printing of
messages. Printing is suppressed if JCNTL(1)<0. JCNTL(2) is used to control the level of printing. JCNTL(2)
must be set by the user to one of the following values:

0 No messages are output.

1 Error messages output.

2 As for 1, plus scalar parameters on the first entry to MA72A/AD.

This argument is not altered by the routine.

JNFO is an INTEGER array of length 2 that need not be set by the user. On successful exit, JNFO(1) is set to 0.
Negative values of JNFO(1) indicate an error. JNFO(1)=1 is associated with a non-terminal error. In the event
of an error, JNFO(2) is used to hold further information. Possible non-zero values of JNFO(1) are:

+1 The defined first dimension LGUARD of the array IGUARD is insufficient. If the user continues to call
MA72A/AD, on exit from the final call a value that is sufficient will be returned in JNFO(2) (see error
-6).

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 3 Documentation date: 30th May 2023

MA72 HSL

-1 Value of TOTELT out of range. JNFO(2) holds TOTELT. Immediate return with remaining input
parameters unchanged. Note that TOTELT is only checked on the first entry to MA72A/AD.

-2 Value of NDOMN out of range. JNFO(2) holds NDOMN. Immediate return with remaining input
parameters unchanged. Note that NDOMN is only checked on the first entry to MA72A/AD.

-3 Value of NVAR out of range. JNFO(2) holds NVAR. Immediate return with remaining input parameters
unchanged. Note that NVAR is only checked on the first entry to MA72A/AD.

-4 One or more variable indices in the current element is out of range. JNFO(2) holds the number that are
out of range. Immediate return with remaining input parameters unchanged.

-5 Value of IDOMN out of range. JNFO(2) holds IDOMN.

-6 Defined first dimension LGUARD of the array IGUARD is insufficient. However, the sequence of calls to
MA72A/AD has been completed and a value that is sufficient is given in JNFO(2).

2.1.2 Preservation of the partial factorization.

MA72B/BD may be called to preserve the partial factorization of a matrix when the sequence of calls to the frontal
solver factorization routine MA62B/BD has not been completed (provided no errors have been issued by MA62B/BD).
For the multiple front algorithm, if there are nelt elements in a subdomain, MA72B/BD should be called once after the
nelt calls to MA62B/BD. MA72B/BD must be called for each subdomain.

The single precision version

CALL MA72B(NRHSB,NDF,NFVAR,LAST,LX,X,LIW,IW,LW,W,ISAVE,JCNTL,JNFO)

The double precision version

CALL MA72BD(NRHSB,NDF,NFVAR,LAST,LX,X,LIW,IW,LW,W,ISAVE,JCNTL,JNFO)

NRHSB and NDF are INTEGER variables that must be unchanged since the calls to the frontal solver factorization
routine MA62B/BD. These arguments are not altered by the routine.

NFVAR is an INTEGER that need not be set by the user. On exit, NFVAR holds the number of variables remaining in the
front after the last call to the frontal solver factorization routine MA62B/BD.

LAST is an INTEGER array of length NDF that must be unchanged since the last call to the frontal solver factorization
routine MA62B/BD. On exit, LAST is restored to the values it contained on exit from the final call to the frontal
solver analyse routine MA62A/AD.

LX is an INTEGER variable that must be set by the user to the first dimension of array X. This argument is not
altered by the routine. Restriction: LX ≥ NDF.

X is a REAL (DOUBLE PRECISION in the D version) array of dimensions LX by NRHSB that need not be set by the
user. This argument is changed by the routine. X is not accessed if NRHSB = 0.

LIW is an INTEGER variable that must be unchanged since the last call to the frontal solver factorization routine
MA62B/BD. This argument is not altered by the routine.

IW is an INTEGER array of length LIW that must be unchanged since the last call to the frontal solver factorization
routine MA62B/BD. On exit, IW(ISAVE(20)+I-1), I = 1, 2,..., NFVAR, is the index of the Ith variable
remaining in the front after the last call to MA62B/BD.

LW is an INTEGER variable that must be unchanged since the last call to the frontal solver factorization routine
MA62B/BD. This argument is not altered by the routine.

W is a REAL (DOUBLE PRECISION in the D version) array of length LW that must be unchanged since the last call to
the frontal solver factorization routine MA62B/BD. On exit, W contains the upper triangular part of the frontal
matrix and the corresponding frontal right-hand side matrix remaining after the last call to MA62B/BD.
Specifically, if NFRONT = ISAVE(27), W(ISAVE(18)+I-1+(J-1)*NFRONT) contains the value of the (I, J)th

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 4 Documentation date: 30th May 2023

HSL MA72

entry in the upper triangular part of the frontal matrix (I = 1, 2,..., J, J = 1, 2,..., NFVAR). In addition,
W(ISAVE(19)+I-1+(J-1)*NFRONT) contains the value of the Ith entry in the J-th frontal right-hand side
matrix (I = 1, 2,..., NFVAR, J = 1, 2,..., NRHSB).

ISAVE is an INTEGER array of length 50 that must be unchanged since the last call to the frontal solver factorization
routine MA62B/BD. Only ISAVE(50) is altered by MA72B/BD.

JCNTL is an INTEGER array of length 2. JCNTL(1) must be set by the user to the stream number for the printing of
messages. Printing is suppressed if JCNTL(1)<0. JCNTL(1) should not be equal to the stream number of either
of the direct access files used by MA62B/BD (but no check is made for this). JCNTL(2) is used to control the
level of printing. JCNTL(2) must be set by the user to one of the following values:

0 No messages are output.

1 Error messages output.

2 As for 1, plus scalar parameters on entry to MA72B/BD. This argument is not altered by the routine.

JNFO is an INTEGER array of length 2 that need not be set by the user. On successful exit, JNFO(1) is set to 0.
Negative values of JNFO(1) indicate an error. In the event of an error, JNFO(2) is used to hold further
information. Possible non-zero values of JNFO(1) are:

-1 MA72B/AD has been called after an error was issued by the frontal solver factorization routine
MA62B/BD. JNFO(2) holds the error flag issued by MA62B/BD. Immediate return with remaining input
parameters unchanged.

-2 The sequence of calls to the frontal solver factorization routine MA62B/BD was completed before
MA72B/AD was called. Immediate return with input parameters unchanged.

-3 NDF has been changed since the calls to the frontal solver factorization routine MA62B/BD. JNFO(2)
holds the value of NDF used in the calls to MA62B/BD. Immediate return with remaining input
parameters unchanged.

-4 NRHSB has been changed since the calls to the frontal solver factorization routine MA62B/BD. JNFO(2)
holds the value of NRHSB used in the calls to MA62B/BD. Immediate return with remaining input
parameters unchanged.

-5 LX is out of range. JNFO(2) is set to the minimum possible value for LX. Immediate return with
remaining input parameters unchanged.

-6 Error detected when writing to a direct access file. The iostat parameter is returned in JNFO(2).

2.1.3 Forward elimination and back-substitution on a subdomain

To perform forward elimination or back-substitution on a subdomain, a call of the following form must be made.

The single precision version

CALL MA72C(JOB,NRHSC,LX,X,LW,W,LIW,IW,ISAVE,JCNTL,JNFO)

The double precision version

CALL MA72CD(JOB,NRHSC,LX,X,LW,W,LIW,IW,ISAVE,JCNTL,JNFO)

JOB is an INTEGER variable that must be set by the user. Possible values are JOB=1, 2, and 3. If the user was using
the frontal solver factorization routine MA62B/BD to solve for a number of right-hand sides at the same time as
factorizing the matrix (that is, MA62B/BD was called with NRHSB>0), JOB should be set to 1 to perform
back-substitution on the subdomain. JOB=2 and 3 are used when solving for further right-hand sides. If the
user wishes to perform forward elimination, JOB should be set to 2. If the user wishes to perform
back-substitution having already computed the solution to the interface problem, JOB should be set to 3. A call
with JOB=3 must be preceded by one with JOB=2. Restriction: 1 ≤ JOB ≤ 3.

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 5 Documentation date: 30th May 2023

MA72 HSL

NRHSC is an INTEGER variable. If JOB = 1, NRHSC must be equal to NRHSB, the number of right-hand sides on the calls
to the frontal solver factorization routine MA62B/BD. Otherwise, NRHSC must be set by the user to the number of
right-hand sides, and must have the same value on the call with JOB=3 as on the call with JOB=2. This
argument is not altered by the routine. Restriction: NRHSC>0.

LX is an INTEGER variable that must be set by the user to the first dimension of X. LX must be at least as large as the
largest integer used to index a variable (that is, as large as the value of NDF on exit from the final call to the
frontal solver analyse routine MA62A/AD for the subdomain). This argument is not altered by the routine.

X is a REAL (DOUBLE PRECISION in the D version) array of dimensions LX, NRHSC.

If JOB = 1, if L is used to index an interface variable, X(L,J) must hold the solution for variable L for
system J (J = 1, 2,..., NRHSC). On exit, X(L,J) is unchanged and if K is used to index an internal
variable, X(K,J) holds the solution for variable K to system J (J = 1, 2,..., NRHSC).

If JOB = 2, on entry X must be set by the user so that if K has been used to index a variable in the
subdomain, X(K,J) is the corresponding component of the right-hand side for the J-th system (J = 1,
2,..., NRHSC). On exit, if K is used to index an internal variable, X(K,J) holds the partial solution for
variable K for system J.

If JOB = 3, on entry X must be set by the user so that if K is an internal variable, X(K,J) is the
corresponding component of the partial solution for the J-th system and if L is used to index an
interface variable, X(L,J) must hold the solution for variable L for the J-th system (J = 1, 2,...,
NRHSC). On exit, X(L,J) is unchanged and X(K,J) holds the solution for variable K to system J (J = 1,
2,..., NRHSC).

LW is an INTEGER variable that must be set by the user to the dimension of the array W. A sufficient value for LW is
L1+L2, where L1 = NRHSC*ISAVE(27) (ISAVE(27) holds the maximum frontsize on the subdomain). If direct
access files were not used by MA62, L2 = 3 + ISAVE(5) (ISAVE(5) holds the length of the real buffer),
otherwise L2 = ISAVE(5) + ISAVE(17)*(ISAVE(27) + NRHSB) (ISAVE(17) holds the maximum pivot block
size and NRHSB is the nuber of right-hand sides on the calls to MA42B/BD). This argument is not altered by the
routine. Restriction: LW ≥ L1+L2.

W is a REAL (DOUBLE PRECISION in the D version) array of length LW. If direct access files were not used by MA62,
the first ISAVE(5) entries of W must be unchanged since the call to MA72B/BD and these entries are unchanged
by MA72C/CD, otherwise W is used by MA72C/CD as workspace.

LIW is an INTEGER variable that must be set by the user to the dimension of the array IW. If direct access files were
not used by MA62, LIW must be at least L3 = ISAVE(6) (ISAVE(6) holds the length of the integer buffer).
Otherwise, LIW must be at least L3 = 4 + ISAVE(6) + ISAVE(27). This argument is not altered by the routine.
Restriction: LIW ≥ L3.

IW is an INTEGER array of length LW. If direct access files were not used by MA62, the first ISAVE(6) entries of IW
must be unchanged since the call to MA72B/BD and these entries are unchanged by MA72B/BD. Otherwise, IW is
used by MA72C/CD as workspace.

ISAVE is an INTEGER array of dimension 50 that must be unchanged since the call to MA72B/BD. This argument is
not altered by the routine.

JCNTL is an INTEGER array of length 2. JCNTL(1) must be set by the user to the stream number for the printing of
messages. Printing is suppressed if JCNTL(1)<0. JCNTL(1) should not be equal to the stream number of any
of the direct access files used by MA62B/BD (but no check is made for this). JCNTL(2) is used to control the
level of printing. JCNTL(2) must be set by the user to one of the following values:

0 No messages are output.

1 Error messages output.

2 As for 1, plus scalar parameters on entry to MA72C/CD.

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 6 Documentation date: 30th May 2023

HSL MA72

This argument is not altered by the routine.

JNFO is an INTEGER array of length 2 that need not be set by the user. On successful exit, JNFO(1) is set to 0.
Negative values of JNFO(1) indicate an error. In the event of an error, JNFO(2) is used to hold further
information. Possible non-zero values of JNFO(1) are:

-1 The call to MA72C/CD does not follow an earlier call to MA72B/BD. Immediate return with input
parameters unchanged.

-2 First dimension LX of the array X too small. JNFO(2) holds a sufficient value. Immediate return with
remaining input parameters unchanged.

-3 Defined length LW of the array W violates the restrictions on LW. JNFO(2) holds a sufficient value.
Immediate return with remaining input parameters unchanged.

-4 Defined length LIW of the array IW violates the restrictions on LIW. JNFO(2) holds a sufficient value.
Immediate return with remaining input parameters unchanged.

-5 Either the number of right-hand sides has been changed since the call to MA72B/BD (JOB = 1) or
NRHSC ≤ 0 (JOB = 2 or 3). If JOB=1, JNFO(2) holds the number of right-hand sides on the call to
MA72B/BD. Otherwise, JNFO(2) holds NRHSC. Immediate return with remaining input parameters
unchanged.

-6 Error detected when reading from a direct access file. The iostat parameter is returned in JNFO(2).

-7 Value of JOB out of range. JNFO(2) holds JOB. Immediate return with remaining input parameters
unchanged.

3 GENERAL INFORMATION

3.1 Summary of information.

Other routines called directly: MA72A/AD calls no other routines. MA72B/BD and MA72C/CD use internal routines
for the MA62 package. MA72B/BD calls the internal subroutines MA72D/DD and MA72E/ED, as well as MA62L/LD
from the MA62 package. MA72C/CD calls routines MA62D/DD, MA62E/ED, and MA62L/LD from the MA62
package.

Input/output: In the event of errors, diagnostic messages are printed on unit JCNTL(1).

Restrictions:

Restrictions for MA72A/AD:
TOTELT ≥ 2.
NDOMN ≥ 2.
NVAR ≥ 1.
1 ≤ IVAR(I) ≤ MAXIND, I = 1, 2,..., NVAR.
1 ≤ IDOMN ≤ NDOMN.

Restrictions for MA72B/BD: LX ≥ NDF and, in addition, the routine requires that the arguments NRHSB, NDF,
LAST, LW, W, LIW, IW, and ISAVE are unchanged since the last call to the frontal solver factorization routine
MA62B/BD. The routine checks that NRHSB and NDF are unchanged.

Restrictions for MA72C/CD:
NRHSC ≥ 1.
1 ≤ JOB ≤ 3.
If direct access files are being used,

LW ≥ NRHSC* ISAVE(27) + ISAVE(5) + ISAVE(17)*(ISAVE(27) + NRHSB).
LIW ≥ 4 + ISAVE(6) + ISAVE(27).

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 7 Documentation date: 30th May 2023

MA72 HSL

Otherwise,
LW ≥ NRHSC* ISAVE(27) + 3 + ISAVE(5).
LIW ≥ ISAVE(6).

4 METHOD

MA72A/AD

On the initial call to MA72A/AD the input data is checked for errors. If no errors are found, the arrays NGUARD and IW
are initialised to zero. When an element is entered, each of its variables J is considered in turn. If IW(J) is equal to 0,
variable J is being encountered for the first time and IW(J) is set to IDOMN, the index of the subdomain to which the
current element belongs. If IW(J) is nonzero and not equal to IDOMN, say IW(J) = JDOMN, then variable J has
already been entered in subdomain JDOMN and so must lie on the interface between subdomains IDOMN and JDOMN. In
this case, NGUARD(IDOMN) and NGUARD(JDOMN) are incremented by one, and J is added to the lists of interface
variables held in columns IDOMN and JDOMN of the matrix IGUARD. Once all the elements have been entered, any
duplicated entries in the interface lists are removed.

MA72B/BD

MA72B/BD first checks that the sequence of calls to the frontal solver factorization routine MA62B/BD has not been
completed and that an error has not been issued by MA62B/BD. This is done using information held in the array ISAVE.
The input parameters are then checked, again using the array ISAVE. If direct access files are being used (this
information is held in ISAVE), the code then calls MA62L/LD to write out the contents of the buffers to the direct
access files.

The array LAST is set to hold the values it would have contained if the sequence of calls to MA62B/BD had been
completed and, if the number of right-hand sides NRHSB is nonzero, the first NRHSB columns of the array X are
initialised to zero.

MA72C/CD

A check is first made that MA72B/BD was previously called for the subdomain. This information is held in ISAVE. The
input parameters are then checked. Again, this is done using ISAVE. The workspace is partitioned according to
whether or not direct access files are being used and the value of the input parameter JOB. If JOB = 1 or 3, MA62D/DD
from the MA62 package is called to perform back-substitution, and if JOB = 2, MA62E/ED performs forward
elimination.

5 EXAMPLE OF USE

We wish to solve the following simple finite-element problem in which the finite-element mesh comprises four
4-noded quadrilateral elements with one freedom at each node i, 1 ≤ i ≤ 6 (the nodes 7, 8, and 9 are assumed
constrained). The mesh is divided into 2 subdomains in which elements 1 and 2 comprise subdomain 1 and elements
3 and 4 comprise subdomain 2.

7 8 9

1 2

4 5 6

3 4

1 2 3

(k)The four element matrices A (1 ≤k ≤ 4) are

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 8 Documentation date: 30th May 2023

HSL MA72

4 4. 3. 2. 3. 5 2. 1. 8. 3.
4 2. 1. 5 3. 2. 5 3. 1. 3. 2. 6 1. 3. 2. 2.,5 1. 7. 6 2. 8. 1 2. 3. 6. 1. 2 8. 2. 2. 5.

2 3. 2. 1. 5. 3 3. 2. 5. 4.
where the variable indices are indicated by the integers before each matrix (columns are identified symmetrically to

(k)rows). The corresponding element right-hand side vectors b (1 ≤k ≤ 4) are

12. 14.
3. 5. 9. 8. ·8. 10. 12. 17.

11. 14.
The following program is used to solve this problem. In this program, we read the element data into arrays ELTPTR

(location of first entry of element), ELTVAR (variable indices), VALPTR (location of first numerical value for element),
VALUE (numerical values), and RHSVAL (right-hand sides). This method of storing the element data is used here for
illustrative purposes only; the user may prefer, for example, to read in the element data from a direct access file. In
practice, the user should reorder the elements in each subdomain before calling MA62. This may be done using routine
MC53.

C Code to run MA62 on a finite element mesh composed of
C two subdomains.

C .. Parameters ..
INTEGER LRHS,LWMX,LIWMX,LAVAR,LFVAR,LGUARD,MAXIND,MAXVL,MAXRVL,

+ MELT,NDOMN,NSUB,NZMAX
PARAMETER (LRHS=1,LWMX=1200,LIWMX=1200,LAVAR=4,LFVAR=9,LGUARD=3,

+ MAXIND=9,MAXVL=30,MAXRVL=15,MELT=4,NDOMN=2,NSUB=4,
+ NZMAX=30)

C ..
C .. Local Scalars ..

INTEGER I,IDOMN,J,JFILE,NDFTOT,NFRONT,NFVAR,NRHSB,NRHSC,NZ,TOTELT
C ..
C .. Local Arrays ..

DOUBLE PRECISION AVAR(LAVAR,LAVAR),
+ FRHS(LFVAR,LRHS),FVAR(LFVAR,LFVAR),
+ RHSVAL(MAXRVL),RINFO(20),RKNFO(20),
+ VALUE(MAXVL),W(LWMX),X(MAXIND,LRHS)
INTEGER ELTPTR(MELT+1),ELTVAR(NZMAX),IFVAR(LFVAR),

+ IGUARD(LGUARD,NDOMN),INFO(20),ISAVE(50,NDOMN),
+ IW(LIWMX),JCNTL(2),JNFO(2),KCNTL(15),
+ KNFO(20),KSAVE(50),LAST(MAXIND),NELT(NDOMN),
+ NGUARD(NDOMN),NLIST(NSUB,NDOMN),VALPTR(MELT)

C ..
C .. External Subroutines ..

EXTERNAL GUARD,INTERF,MA62CD,MA72CD,READIN,SUBDOM
C ..
C Stream for error messages.

JCNTL(1) = 6
JCNTL(2) = 1

C Read in matrix data
CALL READIN(NDFTOT,TOTELT,NDOMN,NSUB,NELT,NLIST,MELT,ELTPTR,NZMAX,

+ ELTVAR,NZ,VALPTR,MAXVL,VALUE,MAXRVL,RHSVAL)

C Generate the guard elements.
CALL GUARD(NDOMN,NSUB,NELT,NLIST,TOTELT,ELTPTR,NZMAX,ELTVAR,

+ NGUARD,LGUARD,IGUARD,MAXIND,IW,JCNTL,JNFO)
IF (JNFO(1).LT.0) GO TO 50

C Run MA62 on each subdomain. This can be done in parallel.
NRHSB = 1
DO 10 IDOMN = 1,NDOMN

CALL SUBDOM(IDOMN,NELT(IDOMN),NLIST(1,IDOMN),TOTELT,ELTPTR,NZ,
+ ELTVAR,VALPTR,MAXVL,VALUE,MAXRVL,RHSVAL,MAXIND,

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 9 Documentation date: 30th May 2023

MA72 HSL

+ LAST,NGUARD(IDOMN),IGUARD(1,IDOMN),LGUARD,LRHS,
+ NRHSB,LWMX,W,LIWMX,IW,MAXIND,X,LAVAR,AVAR,
+ ISAVE(1,IDOMN),INFO,RINFO,NFVAR,JCNTL,JNFO)

IF (INFO(1).LT.0) GO TO 50
IF (JNFO(1).LT.0) GO TO 50

C Write the interface element matrix and element right hand side
C vector out to a file.

JFILE = 8
NFRONT = ISAVE(27,IDOMN)
WRITE (JFILE) NFVAR, (IW(ISAVE(20,IDOMN)+I-1), I=1,NFVAR),

+ ((W(ISAVE(19,IDOMN)+I-1+(J-1)*NFRONT),
+ I=1,NFVAR), J=1,NRHSB),
+ ((W(ISAVE(18,IDOMN)+I-1+(J-1)*NFRONT), I=1,J), J=1,NFVAR)

10 CONTINUE
REWIND (JFILE)

C Solve interface problem using MA62.
CALL INTERF(JFILE,NDOMN,NFVAR,LFVAR,IFVAR,FVAR,FRHS,MAXIND,LAST,

+ LRHS,NRHSB,LWMX,W,LIWMX,IW,MAXIND,X,KCNTL,KSAVE,KNFO,
+ RKNFO)
IF (KNFO(1).LT.0) GO TO 50

C Now perform backsubstitution on each subdomain
DO 20 IDOMN = 1,NDOMN

CALL MA72CD(1,NRHSB,MAXIND,X,LWMX,W,LIWMX,IW,ISAVE(1,IDOMN),
+ JCNTL,JNFO)

IF (JNFO(1).LT.0) GO TO 50
20 CONTINUE

C Solution is in first NDFTOT locations of X
WRITE (*,FMT='(/A)') ' The solution is:'
WRITE (*,FMT='(/6(1X,F6.3))') (X(I,1),I=1,NDFTOT)

C Now solve for a further right-hand side.
WRITE (*,FMT='(/A)') ' Now solving for a further right-hand side.'
NRHSC = 1

C Read in (assembled) right-hand side
READ (*,FMT=*) (X(I,1),I=1,NDFTOT)

C Forward substitution on subdomains
DO 30 IDOMN = 1,NDOMN

CALL MA72CD(2,NRHSC,MAXIND,X,LWMX,W,LIWMX,IW,ISAVE(1,IDOMN),
+ JCNTL,JNFO)

IF (JNFO(1).LT.0) GO TO 50
30 CONTINUE

C Call MA62C/CD for interface problem
CALL MA62CD(NRHSC,MAXIND,X,LWMX,W,LIWMX,IW,KCNTL,KSAVE,KNFO)
IF (KNFO(1).LT.0) GO TO 50

C Back substitution on subdomains
DO 40 IDOMN = 1,NDOMN

CALL MA72CD(3,NRHSC,MAXIND,X,LWMX,W,LIWMX,IW,ISAVE(1,IDOMN),
+ JCNTL,JNFO)

IF (JNFO(1).LT.0) GO TO 50
40 CONTINUE

WRITE (*,FMT='(/A)') ' The solution is:'
WRITE (*,FMT='(/6(1X,F6.3))') (X(I,1),I=1,NDFTOT)

50 CONTINUE

STOP
END

C**
SUBROUTINE READIN(NDFTOT,TOTELT,NDOMN,NSUB,NELT,NLIST,MELT,ELTPTR,

+ NZMAX,ELTVAR,NZ,VALPTR,MAXVL,VALUE,MAXRVL,
+ RHSVAL)

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 10 Documentation date: 30th May 2023

HSL MA72

C Subroutine to read in element data

C .. Scalar Arguments ..
INTEGER MAXRVL,MAXVL,MELT,NDFTOT,NDOMN,NSUB,NZMAX,NZ,TOTELT

C ..
C .. Array Arguments ..

DOUBLE PRECISION RHSVAL(MAXRVL),VALUE(MAXVL)
INTEGER ELTPTR(MELT+1),ELTVAR(NZMAX),NELT(NDOMN),

+ NLIST(NSUB,NDOMN),VALPTR(MELT)
C ..
C .. Local Scalars ..

INTEGER I,IDOMN,RHSCRD,VALCRD
C ..
C Read in the number of variables and elements in the problem.

READ (*,FMT=*) NDFTOT,TOTELT
C Read in elements. NELT(IDOMN) is the number of elements in subdomain
C IDOMN and NLIST is used to hold lists of the elements in each
C subdomain.

READ (*,FMT=*) (NELT(IDOMN),IDOMN=1,NDOMN)
DO 10 IDOMN = 1,NDOMN

READ (*,FMT=*) (NLIST(I,IDOMN),I=1,NELT(IDOMN))
10 CONTINUE

C ELTVAR contains lists of the variables belonging to the
C elements, with those for element 1 preceding those for element
C 2, and so on. ELTPTR(I) points to the position in ELTVAR
C of the first variable in element I. NZ is the total number
C of entries in the element lists.

READ (*,FMT=*) (ELTPTR(I),I=1,TOTELT+1)
NZ = ELTPTR(TOTELT+1) - 1
READ (*,FMT=*) (ELTVAR(I),I=1,NZ)

C VALCRD is the number of numerical values to be input.
C VALUE contains lists of the numerical values in the elemental
C matrices, with element 1 preceding element 2, and so on.
C Since the elemental matrices are symmetric only the upper
C triangular part is needed. VALPTR(I) points to the position in
C VALUE of the first value for element I.

READ (*,FMT=*) (VALPTR(I),I=1,TOTELT)
READ (*,FMT=*) VALCRD
READ (*,FMT=*) (VALUE(I),I=1,VALCRD)

C RHSCRD is the number of right-hand side numerical values to
C be input. RHSVAL contains lists of the right-hand side
C numerical values corresponding to each of the elements in order.

READ (*,FMT=*) RHSCRD
READ (*,FMT=*) (RHSVAL(I),I=1,RHSCRD)
RETURN
END

C**
SUBROUTINE GUARD(NDOMN,NSUB,NELT,NLIST,TOTELT,ELTPTR,NZMAX,ELTVAR,

+ NGUARD,LGUARD,IGUARD,MAXIND,IW,JCNTL,JNFO)

C Subroutine to generate the guard elements using MA72A/AD.

C .. Scalar Arguments ..
INTEGER LGUARD,MAXIND,NDOMN,NSUB,NZMAX,TOTELT

C ..
C .. Array Arguments ..

INTEGER ELTPTR(TOTELT+1),ELTVAR(NZMAX),IGUARD(LGUARD,NDOMN),
+ IW(MAXIND),JCNTL(2),JNFO(2),NELT(NDOMN),NGUARD(NDOMN),
+ NLIST(NSUB,NDOMN)

C ..

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 11 Documentation date: 30th May 2023

MA72 HSL

C .. Local Scalars ..
INTEGER I,ICALL,IDOMN,IELT,JSTRT,NVAR

C ..
C .. External Subroutines ..

EXTERNAL MA72AD
C ..

ICALL = 0
DO 20 IDOMN = 1,NDOMN

DO 10 I = 1,NELT(IDOMN)
IELT = NLIST(I,IDOMN)
NVAR = ELTPTR(IELT+1) - ELTPTR(IELT)
JSTRT = ELTPTR(IELT)
ICALL = ICALL + 1
CALL MA72AD(ICALL,NVAR,MAXIND,ELTVAR(JSTRT),TOTELT,NDOMN,

+ IDOMN,NGUARD,LGUARD,IGUARD,IW,JCNTL,JNFO)
IF (JNFO(1).LT.0) RETURN

10 CONTINUE
20 CONTINUE

RETURN
END

C**
SUBROUTINE SUBDOM(IDOMN,NELT,NLIST,TOTELT,ELTPTR,NZ,ELTVAR,VALPTR,

+ MAXVL,VALUE,MAXRVL,RHSVAL,MAXIND,LAST,NGUARD,
+ IGUARD,LGUARD,LRHS,NRHS,LWMX,W,LIWMX,IW,LX,X,
+ LAVAR,AVAR,ISAVE,INFO,RINFO,NFVAR,JCNTL,JNFO)

C Subroutine to run MA62 on a subdomain and preserve partial
C factorization using MA72B/BD

C .. Scalar Arguments ..
INTEGER IDOMN,LAVAR,LGUARD,LIWMX,LRHS,LWMX,LX,MAXIND,MAXRVL,

+ MAXVL,NELT,NFVAR,NGUARD,NRHS,NZ,TOTELT
C ..
C .. Array Arguments ..

DOUBLE PRECISION AVAR(LAVAR,LAVAR),
+ RHSVAL(MAXRVL),RINFO(20),
+ VALUE(MAXVL),W(LIWMX),X(LX,LRHS)
INTEGER ELTPTR(TOTELT+1),ELTVAR(NZ),IGUARD(LGUARD),

+ INFO(20),ISAVE(50),IW(LIWMX),JCNTL(2),JNFO(2),
+ LAST(MAXIND),NLIST(NELT),VALPTR(TOTELT)

C ..
C .. Local Scalars ..

INTEGER I,IELT,J,JSTRT,K,KSTRT,LIW,LW,NDF,NFRONT,NVAR
C ..
C .. Local Arrays ..

DOUBLE PRECISION CNTL(5)
INTEGER ICNTL(15),ISTRM(2),LENBUF(2)
CHARACTER FILNAM(2)*128

C ..
C .. External Subroutines ..

EXTERNAL MA62AD,MA62BD,MA62ID,MA62JD,MA62PD,MA72BD
C ..

CALL MA62ID(ICNTL,CNTL,ISAVE)
C Loop over the elements in the subdomain calling MA62A/AD

DO 10 I = 1,NELT
IELT = NLIST(I)
NVAR = ELTPTR(IELT+1) - ELTPTR(IELT)
JSTRT = ELTPTR(IELT)
CALL MA62AD(NVAR,ELTVAR(JSTRT),NDF,LAST,MAXIND,ICNTL,ISAVE,

+ INFO)
IF (INFO(1).LT.0) RETURN

10 CONTINUE
C Call to MA62A/AD for guard element

CALL MA62AD(NGUARD,IGUARD,NDF,LAST,MAXIND,ICNTL,ISAVE,INFO)
IF (INFO(1).LT.0) RETURN

C Loop over the elements in the subdomain calling MA62J/JD

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 12 Documentation date: 30th May 2023

HSL MA72

DO 20 I = 1,NELT
IELT = NLIST(I)
NVAR = ELTPTR(IELT+1) - ELTPTR(IELT)
JSTRT = ELTPTR(IELT)
CALL MA62JD(NVAR,ELTVAR(JSTRT),NDF,LAST,ICNTL,ISAVE,INFO,RINFO)
IF (INFO(1).LT.0) RETURN

20 CONTINUE
C Call to MA62J/JD for guard element

CALL MA62JD(NGUARD,IGUARD,NDF,LAST,ICNTL,ISAVE,INFO,RINFO)
IF (INFO(1).LT.0) RETURN

C
C Prepare to call MA62P/PD to set up direct access files.
C Make sure different stream numbers are used on each subdomain.

DO 30 I = 1,2
ISTRM(I) = 10 + (IDOMN-1)*2 + I
LENBUF(I) = 512

30 CONTINUE
CALL MA62PD(ISTRM,FILNAM,LENBUF,ICNTL,ISAVE,INFO)
IF (INFO(1).LT.0) RETURN

C
C Prepare to call MA62B/BD

NFRONT = INFO(6)
LW = 3 + LENBUF(1) + NFRONT* (NFRONT+NRHS)
LIW = LENBUF(2) + 3*NFRONT
IF (LW.GT.LWMX) INFO(1) = -99
IF (LIW.GT.LIWMX) INFO(1) = -98
IF (INFO(1).LT.0) RETURN
DO 60 I = 1,NELT

IELT = NLIST(I)
NVAR = ELTPTR(IELT+1) - ELTPTR(IELT)
JSTRT = ELTPTR(IELT)
KSTRT = VALPTR(IELT)
DO 50 K = 1,NVAR

DO 40 J = 1,K
AVAR(J,K) = VALUE(KSTRT)
KSTRT = KSTRT + 1

40 CONTINUE
50 CONTINUE

CALL MA62BD(NVAR,ELTVAR(JSTRT),NDF,LAST,LAVAR,AVAR,NRHS,
+ RHSVAL(JSTRT),LX,X,LENBUF,LW,W,LIW,IW,ICNTL,CNTL,
+ ISAVE,INFO,RINFO)

IF (INFO(1).LT.0) RETURN
60 CONTINUE

C Call MA72B/BD to preserve partial factorization
CALL MA72BD(NRHS,NDF,NFVAR,LAST,LX,X,LIW,IW,LW,W,ISAVE,JCNTL,JNFO)
RETURN
END

C**
SUBROUTINE INTERF(JFILE,NDOMN,NFVAR,LFVAR,IFVAR,FVAR,FRHS,MAXIND,

+ LAST,LRHS,NRHS,LWMX,W,LIWMX,IW,LX,X,ICNTL,ISAVE,
+ INFO,RINFO)

C Subroutine to use MA62 o solve interface problem

C .. Scalar Arguments ..
INTEGER JFILE,LFVAR,LIWMX,LRHS,LWMX,LX,MAXIND,NDOMN,NFVAR,NRHS

C ..
C .. Array Arguments ..

DOUBLE PRECISION FRHS(LFVAR,LRHS),FVAR(LFVAR,LFVAR),RINFO(20),
+ W(LWMX),X(LX,LRHS)
INTEGER ICNTL(15),IFVAR(LFVAR),INFO(20),ISAVE(50),IW(LIWMX),

+ LAST(MAXIND)
C ..
C .. Local Scalars ..

INTEGER I,IDOMN,J,LIW,LW,NDF,NFRONT
C ..
C .. Local Arrays ..

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 13 Documentation date: 30th May 2023

MA72 HSL

DOUBLE PRECISION CNTL(5)
INTEGER ISTRM(2),LENBUF(2)
CHARACTER FILNAM(2)*128

C ..
C .. External Subroutines ..

EXTERNAL MA62AD,MA62BD,MA62ID,MA62JD,MA62PD
C ..

CALL MA62ID(ICNTL,CNTL,ISAVE)
ICNTL(5) = 1

C Number of elements in interface problem is equal to
C NDOMN, the number of subdomains.

DO 10 IDOMN = 1,NDOMN
READ (JFILE) NFVAR, (IFVAR(I),I=1,NFVAR),

+ ((FRHS(I,J),I=1,NFVAR),J=1,NRHS),
+ ((FVAR(J,I),J=1,I),I=1,NFVAR)

CALL MA62AD(NFVAR,IFVAR,NDF,LAST,MAXIND,ICNTL,ISAVE,INFO)
IF (INFO(1).LT.0) RETURN

10 CONTINUE
REWIND (JFILE)
DO 20 IDOMN = 1,NDOMN

READ (JFILE) NFVAR, (IFVAR(I),I=1,NFVAR),
+ ((FRHS(I,J),I=1,NFVAR),J=1,NRHS),
+ ((FVAR(J,I),J=1,I),I=1,NFVAR)

CALL MA62JD(NFVAR,IFVAR,NDF,LAST,ICNTL,ISAVE,INFO,RINFO)
IF (INFO(1).LT.0) RETURN

20 CONTINUE
REWIND (JFILE)

C
C Prepare to call MA62P/PD

DO 30 I = 1,2
ISTRM(I) = 10 + NDOMN*2 + I
LENBUF(I) = 512

30 CONTINUE
CALL MA62PD(ISTRM,FILNAM,LENBUF,ICNTL,ISAVE,INFO)
IF (INFO(1).LT.0) RETURN

C
C Prepare to call MA62B/BD

NFRONT = INFO(6)
LW = 3 + LENBUF(1) + NFRONT* (NFRONT+NRHS)
LIW = LENBUF(2) + 3*NFRONT
IF (LW.GT.LWMX) INFO(1) = -99
IF (LIW.GT.LIWMX) INFO(1) = -98
IF (INFO(1).LT.0) RETURN
DO 40 IDOMN = 1,NDOMN

READ (JFILE) NFVAR, (IFVAR(I),I=1,NFVAR),
+ ((FRHS(I,J),I=1,NFVAR),J=1,NRHS),
+ ((FVAR(J,I),J=1,I),I=1,NFVAR)

CALL MA62BD(NFVAR,IFVAR,NDF,LAST,LFVAR,FVAR,NRHS,FRHS,LX,X,
+ LENBUF,LW,W,LIW,IW,ICNTL,CNTL,ISAVE,INFO,RINFO)

IF (INFO(1).LT.0) RETURN
40 CONTINUE

RETURN
END

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 14 Documentation date: 30th May 2023

HSL MA72

The input data used for this problem is:

6 4
2 2
1 2
3 4
1 3 5 9 13
4 5 5 6 4 5 1 2 5 6 2 3
1 4 7 17
26
2. 1. 7. 3. 2. 8. 4. 3. 1. 2. 3. 6.
3. 2. 1. 5. 2. 1. 3. 8. 2. 2. 3. 2.
5. 4.
12
3. 8. 5. 10. 12. 9. 12. 11. 14. 8. 17. 14.
6. 1. 2. 7. 4. -1.

This produces the following output:

The solution is:

1.000 1.000 1.000 1.000 1.000 1.000

Now solving for a further right-hand side.

The solution is:

1.000 1.000 0.000 1.000 -1.000 0.000

All use is subject to licence. MA72 v 1.0.0
http://www.hsl.rl.ac.uk/ 15 Documentation date: 30th May 2023

