1 SUMMARY

This subroutine finds row and column permutations that reorder an \(m \times n \) sparse matrix to a bordered block triangular form with full diagonal blocks, or a nested bordered block triangular form with each block itself in bordered block triangular form.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version:

\[
\text{CALL MC33A}(M, N, NZI, NZO, ITYPE, A, IRN, JCN, IP, IQ, IPROF, \\
* \text{IFLAG, IW, IW1, IERR})
\]

The double precision version:

\[
\text{CALL MC33AD}(M, N, NZI, NZO, ITYPE, A, IRN, JCN, IP, IQ, IPROF, \\
* \text{IFLAG, IW, IW1, IERR})
\]

M is an INTEGER variable that must be set by the user to the number of rows in the matrix. This argument is not altered by the subroutine. **Restriction:** \(M > 0 \).

N is an INTEGER variable that must be set by the user to the number of columns in the matrix. This argument is not altered by the subroutine. **Restriction:** \(N > 0 \).

NZI is an INTEGER variable that must be set by the user to the number of entries in the matrix. This argument is not altered by the subroutine. **Restriction:** \(NZI > 0 \).

NZO is an INTEGER variable. It will be set by the subroutine to the number of non-duplicate entries in the matrix. The difference \(NZI - NZO \) is the number of duplicate or out of range entries in the input data.

ITYPE is an INTEGER variable that must be set by the user. If ITYPE is negative, the matrix must be ordered by columns and the position of the first entry in each column set in the first \(N \) entries of IW. If ITYPE is positive, then the matrix must be input in coordinate form in the arrays IRN and JCN. If the absolute value of ITYPE is 3 then the \(P^3 \) algorithm (Preassigned Pivot Procedure), which produces the nested bordered block triangular form, is invoked. Any other value will employ the \(P^3 \) algorithm (Precautionary Partitioned Preassigned Pivot Procedure), which produces the ordinary bordered block triangular form, with the diagonal blocks completely full. This argument is not altered by the subroutine.

A is a REAL (DOUBLE PRECISION in the D version) array of length NZI that must be set by the user to the entries of the matrix. If ITYPE is positive then these entries can be in any order and, on exit, they will be reordered by columns. If ITYPE is negative, then the entries in A must be ordered so that the entries belonging to a single column are contiguous. The ordering of entries within each column is unimportant. The entries of column \(J \) must precede those of column \(J+1 \) (\(J=1, ..., N-1 \)). If there are duplicate or out of range entries in the input data, A will be altered.

IRN is an INTEGER array of length NZI that must be set by the user to the row indices of the entries as ordered in A. If the entries in A are reordered or A is altered because of duplicate or out of range entries, IRN will be altered to correspond.

JCN is an INTEGER array of length NZI. If ITYPE is positive, JCN must hold the column indices of the matrix entries...
as ordered in \(A \). If the user has preordered the input matrix by columns (ITYPE set negative), then this array need not be set. It is used as a work array and will be altered on exit.

\(\text{IP} \) is an INTEGER array of length \(M \) that need not be set by the user. It will be set by the subroutine to the row permutation matrix, held in packed form so that row \(\text{IP}(I) \) of the original matrix is row \(I \) of the permuted form (\(I=1, \ldots, M \)).

\(\text{IQ} \) is an INTEGER array of length \(N \) that need not be set by the user. It will be set by the subroutine to the column permutation matrix, held in packed form so that column \(\text{IQ}(J) \) of the original matrix is column \(J \) of the permuted form (\(J=1, \ldots, N \)).

\(\text{IPROF} \) is an INTEGER array of length \(N \) that need not be set by the user. It will be set by the subroutine so that \(\text{IPROF}(J) \) holds the row index of the first entry in column \(J \) of the permuted matrix.

\(\text{IFLAG} \) is an INTEGER array of length 3 that need not be set by the user. Any null rows and columns will be placed at the end of the permuted matrix. \(\text{IFLAG}(1) \) will be set to the position (in the permuted matrix) of the last non-null row, \(\text{IFLAG}(2) \) will be set to the position (in the permuted matrix) of the last non-null column, and \(\text{IFLAG}(3) \) will be set to the dimension of the final border of the permuted form.

\(\text{IW} \) is an INTEGER array of length \(M+N \) that is used as workspace. If \(\text{ITYPE} \) has been set negative then the first \(N \) entries of \(\text{IW} \) must be set by the user so that \(\text{IW}(J) \) is the position in \(\text{IRN} \) of the first entry in column \(J \) of the original matrix. If there are duplicate or out of range entries in the input data, \(\text{IW} \) will be altered. This argument is not altered by the subroutine. **Restriction:** If \(\text{ITYPE} < 0 \) then \(\text{IW}(I) \leq \text{IW}(I+1) \), \(I=1, \ldots, N \).

\(\text{IW1} \) is an INTEGER array of length \(9*N+3*M \) that is used as workspace.

\(\text{IERR} \) is an INTEGER variable that need not be set by the user. On output, a negative value indicates that an error has been detected. If \(\text{IERR} > 0 \) than the value of \(\text{IERR} \) is the number of out of range entries in the input data \(\text{IRN} \) and \(\text{JCN} \). See §2.3 for a list of possible values and their meanings.

2.2 Common

No common areas are used by the subroutine.

2.3 Errors and diagnostic messages

A negative entry for \(\text{IERR} \) indicates that some problem has been found with the user’s input. Possible values and their meanings are:

- \(-1 \) \(M \) out of range. \(M \leq 0 \)
- \(-2 \) \(N \) out of range. \(N \leq 0 \)
- \(-3 \) \(NZI \) out of range. \(NZI \leq 0 \)
- \(-4 \) \(\text{ITYPE} < 0 \) and \(\text{IW}(I) > \text{IW}(I+1) \) for some \(I \).

\(\text{IERR} > 0 \), \(\text{IERR} \) is equal to the number of entries out of range.

3 GENERAL INFORMATION

Workspace: Provided by user, see arguments \(\text{IW}, \text{IW1}, \) and \(\text{JCN} \).

Use of common: None.

Other routines called directly: \(\text{MC33A/AD} \) calls \(\text{MC59A/AD} \) and \(\text{MC33B/BD} \) which in turn calls either \(\text{MC33C/CD} \) or \(\text{MC33B/DD} \). None of these subroutines need be called directly by the user.

Input/output: None.

Restrictions: \(M > 0, N > 0, NZI > 0 \).
4 METHOD

The method used is based on that developed by Hellerman and Rarick (1971) for the P^1 version, and on work of Erisman, Grimes, Lewis, and Poole (1985) for the P^2 version. Both are described by Duff, Erisman, and Reid (1986). In the permuted matrix, the number of columns that project above the diagonal in P^1 is equal to the number in P^2, but some may have been moved forward so that the total projection above the diagonal is reduced.

References

5 EXAMPLE OF USE

The following example shows the use of the subroutine *MC33A*. When the program

```fortran
DOUBLE PRECISION A(25)
INTEGER IW(20),IW1(90),IFLAG(3)
INTEGER JCN(25),IRN(25),IP(9),IQ(9)
INTEGER IPROF(9)
INTEGER ITYPE,N,M,NZI,I,NZO,IERR
READ(5,*) ITYPE
READ(5,*) N,M,NZI
READ(5,*) (IRN(I),I=1,NZI)
IF (ITYPE .GT. 0) THEN
  READ(5,*) (JCN(I),I=1,NZI)
  READ(5,*) (A(I),I=1,NZI)
  CALL MC33AD(M,N,NZI,NZO,ITYPE,A,IRN,JCN,IP,IQ,IPROF,IFLAG,IW,IW1,*
           IERR)
ENDIF
ELSE
  READ(5,*) (IW(I),I=1,N)
  READ(5,*) (A(I),I=1,NZI)
  CALL MC33AD(M,N,NZI,NZO,ITYPE,A,IRN,JCN,IP,IQ,IPROF,IFLAG,IW,IW1,*
           IERR)
ENDIF
IF (IERR .LT. 0) GO TO 1000
WRITE(6,300) ITYPE,ITYPE
WRITE(6,300) IPROF,(IPROF(I),I=1,N)
WRITE(6,300) IP,(IP(I),I=1,N)
WRITE(6,300) IQ,(IQ(I),I=1,N)
WRITE(6,300) IFLAG,(IFLAG(I),I=1,N)
300 FORMAT(A8,10I4)
STOP
1000 WRITE(6,*) IERR,IERR
STOP
END
```

is run on the input

```
-5
5 5 20
1 2 3 4 5 1 2 3 4 5 1 2 3 5 2 3 4 5 4 5
1 6 11 15 19
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
```

All use is subject to licence.

http://www.hsl.rl.ac.uk/ 3

Documentation date: 19th March 2013

MC33 v 1.0.0
it produces the output

```
ITYPE    -5
IPROF    1 2 3 1 1
 IP 1 2 4 3 5
 IQ 3 4 5 1 2
IFLAG    5 5 2
```

The pattern of the input matrix is:

```
× × × • •
× × × • •
× × × • •
× × • • •
× × • • •
```

and the pattern of the permuted matrix is:

```
× • • × ×
× × • • •
• • • • •
× • • • •
× • • • •
```