
DA01
PACKAGE SPECIFICATION HSL ARCHIVE

Warning: Subroutine DA01 has been superseded by subroutine DC03 which uses improved algorithms;
the use of the latter routine is recommended. The superseded routine may be removed from later
releases of the library.

1 SUMMARY

To integrate a set of first order ordinary differential equations

y' = f (y ,y ,.,y ,x) i=1,2,...,ni i 1 2 n

0given initial conditions y (x) = y at x .i 0 i 0

Each call to the subroutine advances the integration one step from the current point x to x +δx where δx the
steplength must be specified by the user. The 4 th order Runge-Kutta method due to Merson is used which attempts to
estimate the truncation errors for the step. To integrate over a range x ≤ x ≤ x the user must write a driver program0 e

which repeatedly calls the subroutine until the range is covered. If the solution is required within a certain accuracy it
is the responsibility of the user to control the steplength so that both accuracy and stability are achieved. The Merson
error estimates can be used for this.

The user must provide a subroutine to compute values of the derivative functions f (y ,y ,.,y ,x) i=1,2,...,n .i 1 2 n

ATTRIBUTES — Version: 1.0.0. Remark: See also DA02A/AD which provides automatic steplength control for
DA01A/AD and also DC03AD and DC04AD which have been developed specially to integrate so-called ‘stiff’ systems of
equations. Recent comparisons suggest that DC03AD may be much more efficient on many types of problem, specially
if derivative calculations are expensive. Types: DA01A; DA01AD. Calls: DYBDX (user subroutine). Original date:
March 1963. Origin: D.McVicar, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version:

CALL DA01A(Y,E,W1,W2,W3,W4,N,X,DX)

The double precision version:

CALL DA01AD(Y,E,W1,W2,W3,W4,N,X,DX)

Y is a REAL (DOUBLE PRECISION in the D version) array of length at least n, which must be set by the user to the
current values of y i=1,2,...,n , i.e. the y values corresponding to the point x, and on return will have been set byi

the subroutine to the updated values, i.e. those for the point x +δx.
0Initially the user must set the array to the initial values y i=1,2,...,n. If re-starts with a smaller steplength arei

likely, arrangements must be made to preserve the current values between calls, see §2.3 on controlling the
steplength.

E is a REAL (DOUBLE PRECISION in the D version) array of length at least n, which will be set by the subroutine to
the truncation error estimates e i=1,2,...,n for the step just taken. These may be used to adjust the steplength,i

see §4.

W1, W2, W3, W4 are four REAL (DOUBLE PRECISION in the D version) arrays each of length at least n words which

All use is subject to licence. DA01 v 1.0.0
http://www.hsl.rl.ac.uk/ 1 Documentation date: 8th February 2011

DA01 HSL ARCHIVE

will be used by the subroutine as workspace.

N is an INTEGER variable which must be set by the user to n the number of equations, (If n=1 the arguments Y, E,
W1, W2, W3 and W4 need not be arrays).

X is a REAL (DOUBLE PRECISION in the D version) variable and contains the current value of the point reached in
the integration. On entry it must contain the value x and on return it will have been set to x +δx. Initially the
user must set X to the initial point x .0

DX is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the steplength δx .
This argument is not altered by the subroutine. A suggestion for an automatic steplength control scheme is
outlined in §2.3.

2.2 Computing values of the derivative functions.

The user must provide a subroutine called DYBDX to compute values of the derivative functions
f (y ,y ,.,y ,x) i=1,2,...,n.i 1 2 n

The subroutine definition for both single and double precision versions should be

SUBROUTINE DYBDX(Y,F,N,X)
DIMENSION Y(N),F(N)

––
––

RETURN
END

Y is a REAL (DOUBLE PRECISION in the D version) array of length at least n containing the values of y i=1,2,...,n.i

F is a REAL (DOUBLE PRECISION in the D version) array of length at least n which the user must use to return the
values of the functions f (y ,y ,.,y ,x) i=1,2,...,n .i 1 2 n

N is an INTEGER variable and will give n the number of functions.

X is a REAL (DOUBLE PRECISION in the D version) variable and will give the value of x .

The user must not alter the contents of Y,N or X. At each step in the integration the subroutine DYBDX is called 5
times by DA01A/AD (note that the name DYBDX is used by both the single and double precision versions of DA01 and
the word lengths of its arguments must match those of the version being used).

Any additional information that DYBDX may require can be passed to it using Common or by giving it a second
entry point.

2.3 Controlling the steplength.

If all the error estimates |e | i=1,2,...,n , (e is returned in E(i), I=1,N) satisfy the user’s criteria of accuracy thei i

subroutine may be re-entered without need to re-set any of the arguments. If there is any risk that the steplength δx is
too large for the required accuracy, arrangements must be made to preserve at each integration step the current values
of x and y i=1,2,...,n before calling the subroutine so that they may be restored together with a smaller value of δx fori

a retry.
0.2If at least one |e | needs to be reduced by a factor α , the new δx should be approximately α times the old one. Ifi

on the other hand all |e | could be increased by a factor α and still be acceptable, δx could also be increased to a valuei
0.2α times its old value. This is illustrated in the examples of section 7, there the steplength is adjusted by the formula

−0.2δx =δx (0.9α)new old

where an extra factor 0.9 is applied. Also in practice it is a good thing to impose limits on the extent to which the
steplength may change at any one time.

All use is subject to licence. DA01 v 1.0.0
http://www.hsl.rl.ac.uk/ 2 Documentation date: 8th February 2011

HSL ARCHIVE DA01

3 GENERAL INFORMATION

Use of Common: none.

Workspace: all supplied by the user in the arrays W1, W2, W3 and W4, each of length n .

Other subroutines: the user must supply a subroutine called DYBDX to compute values of the derivative functions.

Input/Output: none.

4 METHOD

The method used is the 4 th order Runge-Kutta method due to R.H. Merson, see (1947) Proc. of Symp. on Data
Processing, W.R.E., South Australia. In this method 5 th order terms are used to estimate truncation errors.

5 EXAMPLE OF USE

Suppose we are to solve the second order equation
−x 3y'' = e −θ (y' + y)

for certain values of the parameter θ with initial conditions y=1 , y’ = –1 at x=0 . To use a first order method the
equation is transformed into a pair of first order equations; this is done by defining y = y' and y = y and thus1 2
obtaining

−x 3y' = e −θ (y + y)1 1 2

y' = y2 1

0 0with initial conditions y = −1and y = 1at x = 0 .1 2 0

We propose to integrate out to x=2 and solve for various values of θ and for various accuracies. These we shall read
from data cards. The steplength control outlined in §2.3 will be used and we shall start with an initial steplength equal
to a tenth of the range.

In addition to the driver program we need a subroutine to compute values of the derivative functions. This will
require the value of θ and we pass this through the Common area called PAR.

N.B. In practice such a program as outlined above is likely to contain more sophistications than the one in this
example. An example like this attempts only to illustrate, in a simple way, ways of solving some of the programming
problems which arise when using integrators such as DA01A/AD and to reiterate points made elsewhere in the write
up.

The example code follows.

C y values, save y values, error est.
REAL Y(2),YR(2),E(2)

C work arrays for DA01A
REAL W1(2),W2(2),W3(2),W4(2)

C to pass theta to DYBDX
COMMON/PAR/THETA

C case no., theta , accuracy requirement
1 READ(5,2,END=10) ICASE,THETA,EPS
2 FORMAT(I5,F10.0,E10.2)
X=0.

C set initial values
Y(1)=-1.
Y(2)=1.

C end of range of x
XEND=2.

C initial steplength

All use is subject to licence. DA01 v 1.0.0
http://www.hsl.rl.ac.uk/ 3 Documentation date: 8th February 2011

DA01 HSL ARCHIVE

DX=(XEND-X)*.1
GO TO 5

C prevent delta increasing too much
3 ALPHA=AMAX1(ALPHA,1E-5)

C compute new delta x
DX=DX*.9*ALPHA**(-.2)

C make sure we don't go beyond the end of the range
4 IF(X+DX.LE.XEND) GO TO 5
DX=XEND-X

C test for integration complete
IF(DX.LE.0.) GO TO 8

5 YR(1)=Y(1)
C save current values in case a retry is necessary

YR(2)=Y(2)
XR=X

C integrate forward one step
6 CALL DA01A(Y,E,W1,W2,W3,W4,2,X,DX)

C test for acceptance of the errors
ALPHA=AMAX1(ABS(E(1)),ABS(E(2)))/EPS
IF(ALPHA.LE.1.) GO TO 3
Y(1)=YR(1)

C errors not accepted restore old values ready to try again with
smaller delta x
Y(2)=YR(2)
X=XR

C limit reduction factor and reduce steplength
ALPHA=AMIN1(ALPHA,1E8)
DX=DX*.9*ALPHA**(-.2)

C is delta x still significant?
IF(X+DX.NE.X) GO TO 6

C no: print error diagnostic
WRITE(6,7) ICASE

7 FORMAT('ERROR: CASE NO. ',I2,'TOO HIGH AN ACCURACY REQUESTED')
GO TO 1

C print final values
8 WRITE(6,9) ICASE,Y(2),THETA
9 FORMAT('CASE NO. ',I2,' SOLUTION = ',E13.6,' THETA = ',f10.6)
GO TO 1

10 STOP"
END
SUBROUTINE DYBDX(Y,F,N,X)

C note: dimensions are dummy
REAL Y(*),F(*)

C value of theta
COMMON/PAR/THETA

C value of y1'
F(1)=EXP(-X)-THETA*(Y(1)+Y(2)**3)

C value of y2'
F(2)=Y(1)
RETURN
END

All use is subject to licence. DA01 v 1.0.0
http://www.hsl.rl.ac.uk/ 4 Documentation date: 8th February 2011

