1 SUMMARY

To compute values of the incomplete elliptic integrals of the 1st and 2nd kinds, viz.

$$
\begin{aligned}
& F(\psi, m)=\int_{0}^{\psi}\left(1-m^{2} \sin ^{2} \theta\right)^{-\frac{1}{2}} d \theta \\
& E(\psi, m)=\int_{0}^{\psi}\left(1-m^{2} \sin ^{2} \theta\right)^{\frac{1}{2}} d \theta
\end{aligned}
$$

where $0 \leq m^{2} \leq 1$ and $0 \leq \psi \leq \frac{\pi}{2}$.
ATTRIBUTES - Version: 1.0.0. Types: FB02A; FB02AD; Calls: FD05. Original date: Revised 1967. Origin: L.Morgan*, Harwell.

2 HOW TO USE THE PACKAGE

Single precision version
CALL FBO2A (EMSQ,SINP,COSP,E,F)
Double precision version
CALL FB02AD (EMSQ,SINP, COSP, E,F)
EMSQ is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of m^{2}. Restriction: $0 \leq m^{2}<1$.

SINP is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of $\sin \psi$, where ψ is the upper limit value of the integrals.

COSP is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of $\cos \psi$, see also SINP.

E is a REAL (DOUBLE PRECISION in the D version) variable which will be set by the subroutine to the computed value of the integral $E(\psi, m)$.

F is a REAL (DOUBLE PRECISION in the D version) variable which will be set by the subroutine to the computed value of the integral $F(\psi, m)$.

3 GENERAL INFORMATION

Use of common: none.
Workspace: none.
Other subroutines: calls FD05.
Input/Output: none.

Restrictions:

$0 \leq m^{2}<1$.

Accuracies:

6 figures using 4-byte arithmetic
14 figures using 8-byte arithmetic

