

HSL ARCHIVE

1 SUMMARY

To compute values of the incomplete elliptic integrals of the 1st and 2nd kinds, viz.

$$F(\psi, m) = \int_0^{\psi} (1 - m^2 \sin^2 \theta)^{-\frac{1}{2}} d\theta$$
$$E(\psi, m) = \int_0^{\psi} (1 - m^2 \sin^2 \theta)^{\frac{1}{2}} d\theta$$

where $0 \le m^2 \le 1$ and $0 \le \psi \le \frac{\pi}{2}$.

ATTRIBUTES — Version: 1.0.0. Types: FB02A; FB02AD; Calls: FD05. Original date: Revised 1967. Origin: L.Morgan*, Harwell.

2 HOW TO USE THE PACKAGE

Single precision version

```
CALL FB02A(EMSQ,SINP,COSP,E,F)
```

Double precision version

CALL FB02AD(EMSQ,SINP,COSP,E,F)

- EMSQ is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of m^2 . Restriction: $0 \le m^2 < 1$.
- SINP is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of $\sin \psi$, where ψ is the upper limit value of the integrals.
- COSP is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of $\cos \psi$, see also SINP.
- E is a REAL (DOUBLE PRECISION in the D version) variable which will be set by the subroutine to the computed value of the integral $E(\psi, m)$.
- F is a REAL (DOUBLE PRECISION in the D version) variable which will be set by the subroutine to the computed value of the integral $F(\psi, m)$.

3 GENERAL INFORMATION

Use of common: none.

Workspace: none.

Other subroutines: calls FD05.

Input/Output: none.

Restrictions:

 $0 \le m^2 < 1.$

Accuracies:

6 figures using 4-byte arithmetic

14 figures using 8-byte arithmetic