1 SUMMARY

To evaluate the function $e^{-z^{2}} \operatorname{erfc}(-i z)$ for complex z, viz.

$$
W(z)=e^{-z^{2}}\left(1+\frac{2 i}{\sqrt{\pi}} \int_{0}^{z} e^{t^{2}} d t\right)
$$

$W(z)$ is evaluated for $z=x+i y, x, y>0$ using the approximations
(a) if $|z| \leq 1$ integrate first few terms of expansion of $e^{t^{2}}$.
(b) if $1<|z| \leq 4$ and $y<1.4$ integrate the Taylor series expansion of $e^{t^{2}}$ about points in the region at which the value of $W(z)$ is known.
(c) if $1<|z|$ and $y>1.4$ numerically integrate

$$
W(z)=\frac{i}{\pi} \int_{-\infty}^{\infty} \frac{e^{-t^{2}}}{z-t} d t
$$

using the midpoint rule or Gauss-Hermite.
For outside the region $x, y>0$ the relations
$W(-z)=2 e^{-z^{2}}-W(z)$ and $W(\bar{z})=\bar{W}(z)$ are used.
ATTRIBUTES - Version: 1.0.0. Types: FC01A; FC01AD. Original date: February 1964. Origin: A.Bailey*, Harwell.

2 HOW TO USE THE PACKAGE

The single precision version

CALL FC01A (X,Y,U,V)
The double precision version

CALL FC01AD (X,Y,U,V)
$\mathrm{X} \quad$ is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to x the real part of the argument $z=x+i y$. Restriction: $x>0$.

Y is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to y the imaginary part of the argument $z=x+i y$. Restriction: $y>0$.

U is a REAL (DOUBLE PRECISION in the D version) variable which is set by the subroutine to the real part of the computed value of the function $W(z)$.

V is a REAL (DOUBLE PRECISION in the D version) variable which is set by the subroutine to the imaginary part of the computed value of the function $W(z)$.

3 GENERAL INFORMATION

Use of common: none.
Workspace: none.
Other subroutines: none.
Input/Output: none.

Restrictions:

$x>0$,
$y>0$.

4 METHOD

$W(z)$ is evaluated for z in the first quadrant, other values being calculated from

$$
W(-z)=2 e^{z^{2}}-W(z)
$$

and

$$
W(\bar{z})=\bar{W}(-z)
$$

Within the first quadrant the approximations are computed as follows
(a) If $|z|<1$, then $W(z)$ is calculated by integrating the first few terms of the expansion of $e^{t^{2}}$.
(b) If $1<|z|<4$ and $y<1.4$ integration of a Taylor series expansion of $e^{t^{2}}$ about one of a number of fixed points in the region, at which the value of $W(z)$ is known.
(c) If $1<|z|<4$ and $y>1.4$ the integral

$$
W(z)=\frac{i}{\pi} \int_{-\infty}^{\infty} \frac{e^{-t^{2}}}{z-t} d t
$$

is calculated using the midpoint rule.
(d) If $|z|>4$ the above integral representation is calculated using a Gauss-Hermite quadrature formula.

At the boundaries of the various regions, the function is calculated by two methods and linear interpolation is used to give a continuous error curve.

