1 SUMMARY

To compute values of the natural logarithm of the Gamma function, i.e. $\ln |\Gamma(x)|$ where

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

The calculation is performed to high precision over a wide range of argument values but excluding those in the neighbourhood of zero and the negative integers.

ATTRIBUTES - Version: 1.0.0. Remark: FC14 is to be preferred to FC03 when calculating values of $\Gamma(x)$. Types: FC14A; FC14AD. Original date: November 1982. Origin: A.R.Curtis, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Computing Gamma Function Values

The logarithm of $\Gamma(x)$ is the natural function to use, as $\Gamma(z)$ itself can overflow or underflow for $|x|>56$; the absolute value must be taken since the sign of $\Gamma(x)$ is $(-1)^{n}$ for $-n<x<1-n$. If $\Gamma(z)$ is required (and will not overflow), it can be obtained by using the Fortran exponential function subroutine DEXP after return from FC14, then truncating the result to single precision if desired.

2.2 The Argument List and Calling Sequence

The single precision version
CALL FC14A (X,Y)

The double precision version

```
CALL FC14AD (X,Y)
```

$\mathrm{X} \quad$ is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of x for which the function is to be calculated. This argument is not altered by the subroutine. Restrictions: x must not be a negative integer, zero, or close enough to any of these values so as to cause underflow.

When x is negative the function $\Gamma(x)$ is defined formally by the recurrence relation given in (iii) in $\S 4$.
Y is a REAL (DOUBLE PRECISION in the D version) variable which will be set by the subroutine to the computed value of the natural logarithm of $\Gamma(x)$.

3 GENERAL INFORMATION

Use of common: none.
Workspace: none.
Other routines called directly: none.
Input/output: none.

Restrictions:

$$
\begin{aligned}
& x \neq \text { negative integer, } \\
& x \neq 0,
\end{aligned}
$$

or close enough to any of these values to cause underflow.

Accuracies:

6 figures using 4-byte arithmetic.
$<\max \{1, \ln |\Gamma(x)|\} \times 10^{-15}$ using 8-byte arithmetic.

4 METHOD

The following approximations are used
(i) $2 \leq x \leq 3$, a Chebyshev series is used and the logarithm taken.
(ii) $x \geq 6$, an asymptotic expansion of the form

$$
\ln \Gamma(x)=\ln \sqrt{2 \pi}+\left(x-\frac{1}{2}\right) \ln x-x+\sum_{r=1}^{10} \frac{b_{r}}{x^{2 r-1}}
$$

is used.
(iii) if $-15 \leq x<6$ and x is not in the range the recurrence relation

$$
\Gamma(x+1)=x \Gamma(x)
$$

is used to relate the required value to one in the range
(iv) if $x<-15$, the relation

$$
\Gamma(x) \Gamma(1-x)=\pi \operatorname{cosec} \pi x
$$

is used, computing $-\ln \Gamma(1-x)$ from the asymptotic expansion and calling DLOG and DSIN to compute a correction term.
The error is less than $\max (1,|\ln \Gamma(x)|) \times 10^{-15}$ for all cases tested covering (with varying density) the range $-10^{15}<x<10^{15}$.

