1 SUMMARY

To compute values of the plasma dispersion function

$$
u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y e^{-t^{2}} d t}{(x-t)^{2}+y^{2}}
$$

to an accuracy of 6 decimals for a series of n equally spaced values of $x=x_{s}, x_{s}+\delta, \ldots, x_{s}+(n-1) \delta$ at a fixed value of y.
ATTRIBUTES - Version: 1.0.0. Remark: using FC16 is faster than making repeated calls to FC01. Types: FC16A, FC16AD. Calls: FC07. Original date: February 1983. Origin: A. R. Curtis, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list and calling sequence

The single precision version
CALL FC16A (Y, XS, DELTA, $\mathrm{N}, \mathrm{U})$
The double precision version
CALL FC16AD (Y, XS, DELTA, N, U)
Y is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of y. Restriction: $y>0$. This argument is not altered by the subroutine.

XS is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of x_{s} the smallest value of x for which $u(x, y)$ is required. This argument is not altered by the subroutine.

DELTA is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of δ the interval between consecutive x values. Restriction: $\delta>0$. This argument is not altered by the subroutine.
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to the value of n the total number of x values. Restriction: $n>0$. This argument is not altered by the subroutine.

U is a REAL (DOUBLE PRECISION in the D version) array of dimension at least n in which the subroutine will return the values of $u(x, y)$ for $x=x_{s}, x_{s}+\delta, \ldots, x_{s}+(n-1) \delta$.

3 GENERAL INFORMATION

Use of common: none.
Workspace: None.
Other routines called directly: FC07 is called.

Input/output: none.

Restrictions:

$y>0$,
$n>0$,
$\delta>0$.

Accuracies:

6 decimal places.

4 METHOD

4.1 Method

The function $u(x, y)$ is the real part of the complex analytic function

$$
w(z)=e^{-z^{2}} \operatorname{erfc}(-i z), \quad z=x+i y
$$

(i) for $x^{2}+y^{2} \geq 36$ the asymptotic formula

$$
w(z)=i z\left(\frac{0.5124242}{z^{2}-0.2752551}+\frac{0.05176536}{z^{2}-2.724745}\right)
$$

(page $328 r e f 1$) is computed; it is correct to the required accuracy in this region, but if $y<6$ values are also computed by method (ii) below in a small transition interval, and smooth interpolation used between the two values.
(ii) Within the above circle, the differential equations

$$
\begin{aligned}
& \frac{d u}{d x}=2(v y-u x) \\
& \frac{d v}{d x}=2\left(\pi^{-1 / 2}-u y-v x\right)
\end{aligned}
$$

are solved, to accuracy 10^{-6}, from initial values

$$
\begin{aligned}
& u(0, y)=e^{y^{2}} \operatorname{erfc}(y) \\
& v(0, y)=0
\end{aligned}
$$

Values for negative x are obtained by using the fact that u is an even function of x.

4.2 Accuracy and timing

All computation is done in double precision internally; however, as the method is only capable of 6-decimal accuracy the main advantage of FC16AD is the double precision accumulation of x.

The c.p.u. time taken by the subroutine is given approximately by

$$
t_{c p u}=t_{0}(y)+t_{1} n_{1}+t_{2} n_{2}
$$

where n_{1} is the number of x values outside the circle $x^{2}+y^{2}=36$ and n_{2} is the number inside. On an IBM/3081, $t_{1}=10$ $\mu \mathrm{sec}, t_{2}=7 \mu \mathrm{sec}$, and $t_{0}(y)$ decreases from just under 5 msec for very small y, through about 3 msec at $y \approx 1.2,2 \mathrm{msec}$ at $y \approx 2.8$, to about 5 msec just below $y=6$; for $Y \geq 6$ (where $n_{2}=0$) t_{0} is about $50 \mu \mathrm{sec}$.

References

1. M.Abramowitz and I.A.Stegun, 'Handbook of Mathematical Functions', Dover (New York) 1965.
2. A.R.Curtis, 'Calculation of the Mixed Doppler-Lorentz Line-shape Function', AERE report R. 10837 (1983).
