1 SUMMARY

This function supplies real-valued machine constants relating to the floating-point storage and arithmetic of the machine in use.

A nonzero floating-point number is stored in the form $\pm m \beta^{e}$, where β is known as the base (or radix) of the arithmetic, m is the mantissa (or significand or fraction) and e is the exponent (or characteristic). The mantissa is usually normalized so that any floating-point number has a unique representation. Individual machines differ in the way that the normalization is performed. The exponent is stored as a sequence of binary digits (bits); the sign of the exponent either occupies one of these digits, or, more commonly, the actual value of the exponent is obtained by adding the stored binary representation to a fixed negative bias. The mantissa is represented as $m=\sum_{i=1}^{n} m_{i} \beta^{-i+j}$, where $0 \leq m_{i}<\beta, j$ is usually 0 or 1 and m is usually normalized so that $m_{1}>0$. (Under special circumstances, m_{1} may be zero; such circumstances are typically associated with implementations of gradual underflow on a particular machine.)
ATTRIBUTES - Version: 1.0.0. Types: Real (single, double). Calls: None. Original date: February 2005. Licence: A third-party licence for this package is available without charge.

2 HOW TO USE THE PACKAGE

Two versions of the function are available corresponding to the use of single and double precision arithmetic.

2.1 Argument list

The single precision version

$$
\text { RNUM }=\text { FD15A }(M C)
$$

The double precision version

```
DNUM = FD15AD (MC)
```

MC is a CHARACTER variable which must be set by the user to select which one of the real machine constants is required. Possible values of MC and the corresponding constants are:

1. FD15A/FD15AD ('E') is the smallest REAL/DOUBLE PRECISION number of the form β^{i} such that $1.0+\beta^{i}$ and 1.0 are different stored numbers. On most machines $i=1-n$. This value is that returned by the Numeric Inquiry Function EPSILON in the ISO Fortran 90 standard and is commonly called the machine precision.
2. $\operatorname{FD} 15 \mathrm{~A} / \mathrm{FD} 15 \mathrm{AD}\left(\mathrm{I}^{\prime}\right)$ is a close approximation to the smallest positive REAL/DOUBLE PRECISION number which may be stored on the machine to full precision, i.e., for which $m_{1}>0$. This number is normally $\beta^{e_{\text {min }}+j-1}$, where $e_{\text {min }}$ is the smallest allowable value of the exponent. This value is that returned by the Numeric Inquiry Function TINY in the ISO Fortran 90 standard.
3. FD15A/FD15AD ($\left.{ }^{\prime} H^{\prime}\right)$ is a close approximation to the largest finite positive REAL/DOUBLE PRECISION number which may be stored on the machine. This number is normally $\beta^{e_{\max }+j}\left(1.0-\beta^{-n}\right)$, where $e_{\max }$ is the largest allowable value of the exponent, and is the value returned by the Numeric Inquiry Function HUGE in the ISO Fortran 90 standard.
4. FD15A/FD15AD (' R^{\prime}) gives β, the base used for the floating-point arithmetic. This is the same value returned as an integer by the ISO Fortran 90 standard Numeric Inquiry Function RADIX but here it is returned as a REAL/DOUBLE PRECISION number.

MC is not altered by the function. Restriction: it must be one of the set ['E','T','H','R']. Note: FD15 does not indicate an error when MC is out of range but returns the value zero.

FD15A/FD15AD is a REAL (DOUBLE PRECISION in the D version) function whose value will be set to the required machine constant.

3 GENERAL INFORMATION

Use of common: None.
Other routines called directly: None.
Input/output: None.
Restrictions: MC must be one of the set ['E','T','H','R'].

4 METHOD

The constants have been set by the original implementor of HSL on your machine. Further detail of the machine representation of floating-point numbers may be found in, for instance, the Dictionary of Computing (Oxford University Press, 1983).

5 EXAMPLE OF USE

This is a very simple example which lists the four machine constants for the current machine.

```
PROGRAM MAIN
DOUBLE PRECISION DNUM, FD15AD
INTEGER INUM
DNUM = FD15AD( 'E' )
WRITE( 6, 2000 ) DNUM
DNUM = FD15AD( 'T' )
WRITE( 6, 2010 ) DNUM
DNUM = FD15AD( 'H' )
WRITE( 6, 2020 ) DNUM
INUM = INT(FD15AD( 'R' ))
WRITE( 6, 2030 ) INUM
FORMAT( ' Machine precision (double precision) = ', 1P, E12.4 )
2010 FORMAT( ' Smallest floating-point number (double precision) = ',
* 1P, E12.4 )
2020 FORMAT( ' Largest floating-point number (double precision) = ',
    * 1P, E12.4 )
2030 FORMAT( ' Base used for floating-point (double precision) = ',
    * I10 )
    END
```

This produces the following output

```
Machine precision (double precision) = 2.2204E-16
Smallest floating-point number (double precision) = 2.2251-308
Largest floating-point number (double precision) = 1.7977+308
Base used for floating-point (double precision) =
    2
```

