1 SUMMARY

Given $x \geq 0$ computes the values of the Spherical Bessel functions

$$
j_{n}(x)=\left(\frac{\pi}{2 x}\right)^{\frac{1}{2}} J_{n+\frac{1}{2}}(x)
$$

for $n=0$ up to $N, N \leq 29$.
The method used is based upon the recurrence relation

$$
j_{n+1}(x)=\left(\frac{2 n+1}{x}\right) j_{n}(x)-j_{n-1}(x)
$$

given by F.J. Corbalo and J.L. Uretsky, J.A.C.M., Vol. 6, No. 3.
ATTRIBUTES - Version: 1.0.0. Types: FF05A; FF05AD. Original date: December 1963. Origin: F.R.Hopgood*, Harwell.

2 HOW TO USE THE PACKAGE

The single precision version
CALL FFO5A (N, X, ARRAY)
The double precision version
CALL FF05AD (N, X, ARRAY)
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to the upper limit of the range of functions to be computed, i.e. the subroutine will return the values of $j_{n}(x), n=0,1, ., N$. Restriction: $1 \leq N \leq 29$.
X is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of the argument x. Restriction: $x \geq 0$.

ARRAY is a REAL (DOUBLE PRECISION in the D version) array of length at least $\mathrm{N}+1$ which is set by the subroutine to the function values. The computed values of $j_{n}(x), n=0,1,, N$ will be stored in ARRAY (I) I=1,N+1.

3 GENERAL INFORMATION

Use of common: none.
Workspace: none.
Other subroutines: none.
Input/Output: prints a diagnostic message when any of the restrictions are violated.

Restrictions:

$x \geq 0$,
$1 \leq N \leq 29$.
Accuracies: The 8-byte version has been checked and found to give at least ten decimal digits accuracy in the range $0 \leq x \leq 20$. There is no reason why it should not give at least 13 figure accuracy over the whole range of positive x values. The 4-byte version is accurate to 6 figures.

4 METHOD

The method used is based upon the recurrence relation

$$
j_{n+1}(x)=\left(\frac{2 n+1}{x}\right) j_{n}(x)-j_{n-1}(x)
$$

given by F.J. Corbalo and J.L. Uretsky, J.A.C.M., Vol. 6, No. 3.

