1 SUMMARY

To calculate the cartesian co-ordinates x, y, z of a point given in spherical co-ordinates r, θ, ϕ or vice versa. The transformations are: option (1)

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta .
$$

and option (2)

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}, \quad \theta=\arctan \left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right), \quad \phi=\arctan \left(\frac{y}{x}\right) .
$$

ATTRIBUTES - Version: 1.0.0. Types: GA01A; GA01AD. Original date: April 1964. Origin: A.Hearn, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument lists

The single precision version
CALL GA01A(R,THETA, PHI, X, Y, Z,N)
The double precision version
CALL GA01AD (R, THETA, PHI, X, Y, Z, N)
R is a REAL (DOUBLE PRECISION in the D version) variable which is used to hold the value of the r component of the spherical co-ordinates. If the polar to cartesian transformation has been chosen ($\mathrm{N}=1$) it must be set by the user, otherwise (for $\mathrm{N}=2$) it is set by the subroutine.
THETA is a REAL (DOUBLE PRECISION in the D version) variable which is used to hold the value of the θ component of the spherical co-ordinates. If $\mathrm{N}=1$ it must be set by the user, otherwise if $\mathrm{N}=2$ it is set by the subroutine. Restriction: $0 \leq \theta \leq \pi$.
PHI is a REAL (DOUBLE PRECISION in the D version) variable which is used to hold the value of the ϕ component of the spherical co-ordinates. If $\mathrm{N}=1$ it must be set by the user, otherwise if $\mathrm{N}=2$ it is set by the subroutine. Restriction: $0 \leq \phi \leq 2 \pi$.

X is a REAL (DOUBLE PRECISION in the D version) variable which is used to hold the value of the x component of the cartesian co-ordinates. If the cartesian to polar transformation has been chosen ($\mathrm{N}=2$) it must be set by the user, otherwise (for $\mathrm{N}=1$) it is set by the subroutine.

Y is a REAL (DOUBLE PRECISION in the D version) variable which is used to hold the value of the y component of the cartesian co-ordinates. If $\mathrm{N}=2$ it must be set by the user, otherwise if $\mathrm{N}=1$ it is set by the subroutine.

Z is a REAL (DOUBLE PRECISION in the D version) variable which is used to hold the value of the z component of the cartesian co-ordinates. If $\mathrm{N}=2$ it must be set by the user, otherwise if $\mathrm{N}=1$ it is set by the subroutine.

N is an INTEGER variable which must be set by the user to either one or two. Set N to
1 for the transformation from polar to Cartesian.
2 for the transformation from Cartesian to polar.
Note: if $x=y=0$ in the transformation of Cartesian to polar ϕ is set to its previous value or to zero if no previous value has been computed.

3 GENERAL INFORMATION

Use of common: None.
Workspace: None.
Other routines called directly: None.
Input/output: None.
Restrictions: $0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi$.

