
HSL_FA04
PACKAGE SPECIFICATION HSL ARCHIVE

1 SUMMARY

This package generates uniformly distributed pseudo-random numbers. Random reals are generated in the
range 0 <ξ < 1 or the range −1 <η < 1 and random integers in the range 1 ≤k ≤ N where N is specified by the user.

A multiplicative congruent method is used where a 31 bit generator word g is maintained. On each call to a
5 31 16procedure of the package, g is updated to 7 g mod(2 − 1); the initial value of g is 2 − 1. Depending upon then+1 n

31type of random number required the following are computed ξ = g /(2 − 1); η = 2ξ − 1 or k = int.part{ ξN}+1.n+1

The package also provides the facility for saving the current value of the generator word and for restarting with any
specified value.

ATTRIBUTES — Version: 1.0.0. Types: HSL_FA04_SINGLE, HSL_FA04_DOUBLE. Calls: None. Original date:
September 1995. Origin: N. I. M. Gould and J. K. Reid, Rutherford Appleton Laboratory. Language: Fortran 90.
Remark: This supersedes FA04.

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Single precision version
USE HSL_FA04_SINGLE

Double precision version
USE HSL_FA04_DOUBLE

If it is required to use both modules at the same time, the subroutines FA04_RANDOM_REAL, FA04_RANDOM_INTEGER,
FA04_GET_SEED, and FA04_SET_SEED (Section 2.1) must be renamed on one of the USE statements.

2.1 Argument lists and calling sequences

There are four procedures for user calls.

2.1.1 Subroutine to obtain a random real value

CALL FA04_RANDOM_REAL(POSITIVE, RANDOM_REAL)

POSITIVE is a scalar INTENT(IN) argument of type default LOGICAL. If POSITIVE is .TRUE., the generated
random number is a real value in the range 0 <ξ < 1, while if POSITIVE is .FALSE., the generated random
number is a real value in the range −1 <η < 1.

RANDOM_REAL is a scalar INTENT(OUT) argument of type REAL (double precision REAL in HSL_FA04_DOUBLE). It is
set to the required random number.

2.1.2 Subroutine to obtain a random integer value

CALL FA04_RANDOM_INTEGER(N, RANDOM_INTEGER)

N is a scalar INTENT(IN) argument of type default INTEGER. It must be set by the user to specify the upper
bound for the range 1 ≤k ≤ N within which the generated random number is required to lie. Restriction: N must
be positive.

RANDOM_INTEGER is a scalar INTENT(OUT) argument of type default INTEGER. It is set to the required random
integer k.

All use is subject to licence. HSL_FA04 v 1.0.0
http://www.hsl.rl.ac.uk/ 1 Documentation date: 8th February 2011

HSL_FA04 HSL ARCHIVE

2.1.3 Subroutine to obtain the current generator word

CALL FA04_GET_SEED(SEED)

SEED is a scalar INTENT(OUT) argument of type default INTEGER. It is set to the current value of the generator word
g.

2.1.4 Subroutine to reset the current value of the generator word

CALL FA04_SET_SEED(SEED)

SEED is a scalar INTENT(IN) argument of type default INTEGER that must be set by the user to the required value of
the generator word. It is recommended that the value should have been obtained by a previous call of

31FA04_GET_SEED. It should have a value in the range 0 < SEED ≤ P, where P = 2 − 1 = 2147483647. If it is
31outside this range, the value SEED mod(2 − 1) is used.

3 GENERAL INFORMATION

Use of common: None.

Other modules used directly: None.

Input/output: None.

Restrictions: N > 0.

4 METHOD

4.1 Method description

The code is based on that of L.Schrage, ‘A More Portable Fortran Random Number Generator’, TOMS, 5, 2, June
1979. The method employed is a multiplicative congruential method. The generator word g is held as an integer and
is updated on each call as follows

5 31g = 7 g mod(2 − 1)n+1 n

The result returned from FA04_RANDOM_REAL, for a non-negative argument, is ξ, where
31ξ = g /(2 − 1)n+1

and for a negative argument is

2ξ − 1

The value of k returned by FA04_RANDOM_INTEGER is

int.part{ ξN} + 1

4.2 Comparison with FA01A
31FA04_RANDOM_REAL provides the Fortran user with a random number generator that has a cycle length of 2 − 1,

which is twice as long as the cycle length of FA01A.

5 EXAMPLE

Suppose we wish to generate two random real numbers lying between plus and minus one, reset the generator word to
its original value, and then find two positive random integers with values no larger than one hundred. Then we might
use the following piece of code.

PROGRAM HSL_FA04_SPEC

All use is subject to licence. HSL_FA04 v 1.0.0
http://www.hsl.rl.ac.uk/ 2 Documentation date: 8th February 2011

HSL ARCHIVE HSL_FA04

USE HSL_FA04_DOUBLE
IMPLICIT NONE
INTEGER :: random_integer, seed
REAL (kind = KIND(1.0D+0)) :: random_real

! Get the current generator word
CALL FA04_GET_SEED(seed)
WRITE(6, "(' generator word = ', I10)") seed

! Generate a random real in [-1, 1]
CALL FA04_RANDOM_REAL(.FALSE., random_real)
WRITE(6, "(' random real = ', F10.2)") random_real

! Generate another random real
CALL FA04_RANDOM_REAL(.FALSE., random_real)
WRITE(6, "(' second random real = ', F10.2)") random_real

! Restore the generator word
CALL FA04_SET_SEED(seed)

! Generate a random integer in [1, 100]
CALL FA04_RANDOM_INTEGER(100, random_integer)
WRITE(6, "(' random integer = ', I3)") random_integer

! Generate another random integer
CALL FA04_RANDOM_INTEGER(100, random_integer)
WRITE(6, "(' second random integer = ', I3)") random_integer
END PROGRAM HSL_FA04_SPEC

This produces the following output:

generator word = 65535
random real = 0.03
second random real = -0.34
random integer = 52
second random integer = 33

All use is subject to licence. HSL_FA04 v 1.0.0
http://www.hsl.rl.ac.uk/ 3 Documentation date: 8th February 2011

