
HSL_VH01
PACKAGE SPECIFICATION HSL ARCHIVE

1 SUMMARY

This package uses the genetic algorithm to search for a small value of an objective function of n binary (zero-one)
variables. Each string of binary variables is stored in a logical array. A population of p such strings is maintained
along with their associated objective function values. The population evolves in a sequence of iterations. The best
features of the population at iteration k are passed to to the population at iteration k+1 by means of mutation and
crossover.

The package obtains function values by reverse communication. The user is periodically required to check for
termination.

ATTRIBUTES — Version: 1.0.0. Types: Real (single, double). Calls: HSL_FA14, HSL_ZA03. Original date:
September 1995. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 90.

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Single precision version
USE HSL_VH01_SINGLE

Double precision version
USE HSL_VH01_DOUBLE

If it is required to use both modules at the same time, the derived types VH01_DIMENSION, VH01_PARAMETERS,
VH01_STRING VH01_EVALUATE, and VH01_INFORMATION (Section 2.1), and the subroutines VH01_INITIALIZE,
VH01_ITERATION and VH01_WIND_UP (Section 2.2) must be renamed on one of the USE statements.

2.1 The derived data types

Five publically accessible derived data types are used by the package.

2.1.1 The derived data type for holding problem dimensions

The derived data type VH01_DIMENSION is used to hold problem dimensions. The components of VH01_DIMENSION
are:

n is a scalar variable of type default INTEGER which holds the number of binary variables, n.

p is a scalar variable of type default INTEGER which holds the size of the population, p.

m is a scalar variable of type default INTEGER which holds the number, m, of pairs in the population that will be
subjected to crossover (see Section 4).

2.1.2 The derived data type for holding algorithmic parameters

The derived data type VH01_PARAMETERS is used to hold parameters which control the minimization. The
components of VH01_PARAMETERS are:

xi is a scalar variable of type default REAL (double precision REAL in HSL_VH01_DOUBLE) which holds the
crossover probability, ξ (see section 4).

mu is a scalar variable of type default REAL (double precision REAL in HSL_VH01_DOUBLE) which holds the
mutation probability, µ (see section 4).

twopt is a scalar variable of type LOGICAL(KIND=ZA03_1BYTE) (see the package HSL_ZA03 for details) which
specifies whether two-point crossover is to be used (see section 4).

All use is subject to licence. HSL_VH01 v 1.0.0
http://www.hsl.rl.ac.uk/ 1 Documentation date: 8th February 2011

HSL_VH01 HSL ARCHIVE

wrap is a scalar variable of type LOGICAL(KIND=ZA03_1BYTE) (see the package HSL_ZA03 for details) which
specifies whether the crossover is to be allowed to wrap around (see section 4).

2.1.3 The derived data type for holding population information

The derived data type VH01_STRING is used to hold an estimate of the minimizer together with its associated
objective function value. The components of VH01_STRING are:

x is a rank-one pointer array of type LOGICAL(KIND=ZA03_1BYTE) (see the package HSL_ZA03 for details)
which represents a string of binary variables. The i–th component of x has the value .TRUE. if the i–th
component of the string is 1, and is .FALSE. otherwise.

f is a scalar variable of type default REAL (double precision REAL in HSL_VH01_DOUBLE) which contains the
value of the objective function corresponding to the string represented in x.

2.1.4 The derived data type for recording population changes

The derived data type VH01_EVALUATE is used to define which strings have changed, and thus which objective
function values need to be recomputed. The components of VH01_EVALUATE are:

changes is a scalar variable of type default INTEGER which holds the number of members of the population that
have changed.

list is a pointer array of type default INTEGER which holds a list of the members of the population that have
changed.

seed is a scalar variable of type FA14_SEED which holds the generator word used in calls by HSL_VH01 to members
of the random number package HSL_FA14. It is set to the same initial value (to generate the same random
sequence) each time VH01_INITIALIZE is called. This behaviour may be controlled by appropriate use of the
FA14_GET_SEED and FA14_SET_SEED entries before and after the initialization calls.

2.1.5 The derived data type for holding algorithmic information

The derived data type VH01_INFORMATION is used to hold information concerning the progress of the minimization.
The components of VH01_INFORMATION are:

inform is a scalar variable of type default INTEGER which controls the action of the package.

iter is a scalar variable of type default INTEGER which holds the number of iterations performed.

best is a scalar variable of type default INTEGER which holds the number of the individual in the current population
that yields the smallest objective value.

warnings is a scalar variable of type default INTEGER which holds the unit number for any warning messages
issued. A non-positive value of warnings stops warning messages.

errors is a scalar variable of type default INTEGER which holds the unit number for any error messages issued. A
non-positive value of errors stops error messages.

progress is a scalar variable of type default INTEGER which holds the unit number for any messages about the
progress of the minimization. A non-positive value of progress stops these messages.

2.2 Argument lists and calling sequences

There are three procedures for user calls:

1. The subroutine VH01_INITIALIZE is used to set default values and initialize allocatable array dimensions.
This procedure must be called prior to the minimization.

2. The subroutine VH01_ITERATION is called repeatedly to perform the minimization. On each exit, the user is
expected to provide additional information and, if necessary, re-enter the subroutine.

All use is subject to licence. HSL_VH01 v 1.0.0
http://www.hsl.rl.ac.uk/ 2 Documentation date: 8th February 2011

HSL ARCHIVE HSL_VH01

3. The subroutine VH01_WIND_UP is provided to allow the user to automatically deallocate the arrays allocated in
VH01_INITIALIZE at the end of the minimization. This subroutine should be used before another minimization
is attempted.

2.2.1 The initialization subroutine

Default values are provided and arrays allocated as follows:

CALL VH01_INITIALIZE(DIMEN, POP, PARAM, EVAL, INFO)

DIMEN is a scalar INTENT(INOUT) argument of type VH01_DIMENSIONS. The components n, p and m must be set to
the number of binary variables n, the size of the population p, and the number of pairs of crossovers m,
respectively. If m is less than 1, it will be reset to 1, and if it is greater than (p − 1) / 2, it will be reset to (p − 1) / 2.
Otherwise, DIMEN will not be altered on output. Restriction: DIMEN%n ≥ 1, DIMEN%p ≥ 1.

POP is an array INTENT(OUT) argument of type VH01_STRING and dimension PARAM%p which need not be set on
input. On exit, the component x for each member of the array will have been allocated with length DIMEN

PARAM is a scalar INTENT(OUT) argument of type VH01_PARAMETERS which need not be set on input. On output,
PARAM contains default values for the components xi = 0.9, mu = 0.5, twopt = .TRUE., and wrap = .TRUE..
These values should only be changed after calling VH01_INITIALIZE.

EVAL is a scalar INTENT(OUT) argument of type VH01_EVALUATE which need not be set on input. On exit, the
component list will have been allocated with length DIMEN

INFO is a scalar INTENT(INOUT) argument of type VH01_INFORMATION. The components warnings, errors, and
progress should be set to the unit numbers for warning, error and information messages. A non-positive value
suppresses the appropriate class of message. The remaining components need not be set. A successful call to
VH01_INITIALIZE is indicated when the component inform has the value 0. For other return values of
inform, see Section 2.4

2.2.2 The minimization subroutine

The genetic algorithm is called as follows:

CALL VH01_ITERATION(DIMEN, POP, PARAM, EVAL, INFO)

DIMEN is a scalar INTENT(IN) argument of type VH01_DIMENSIONS. DIMEN should be unaltered since the last call to
VH01_INITIALIZE.

POP is an array INTENT(INOUT) argument of type VH01_STRING and dimension PARAM%p. On initial (INFO
1 ≤ i ≤ PARAM%p, should be set to an estimate of the minimizing binary string. The j–th component of POP(i)
value 1, and .FALSE. if the variable has the value 0. It is preferable if the selected initial strings are different,
but this is not crucial. The component POP(i) corresponding to the string in POP(i) On each subsequent exit,
POP(i) the minimizing binary string. The user will be directed to re-evaluate POP(i) INFO

PARAM is a scalar INTENT(IN) argument of type VH01_PARAMETERS which must contain values for the components
xi, mu, twopt and wrap. These values will have been assigned defaults by VH01_INITIALIZE. Restriction:
0 ≤PARAM%xi ≤ 1, 0 ≤PARAM%mu ≤ 1.

EVAL is a scalar INTENT(INOUT) argument of type VH01_EVALUATE which need not be set on initial (INFO the first
EVAL%changes components of EVAL%list contain the indices of members of the population that have changed
during the current iteration.

INFO is a scalar INTENT(INOUT) argument of type VH01_INFORMATION. The component inform must be unaltered
since the last successful call to VH01_INITIALIZE, and will subsequently be reset on exit from
VH01_ITERATION to indicate what action needs be taken by the user before re-entering the subroutine (see
Section 2.3). The components warnings, errors, and progress should be unaltered since the last successful
call to VH01_INITIALIZE and are unaltered by VH01_ITERATION. The components iter and best need not

All use is subject to licence. HSL_VH01 v 1.0.0
http://www.hsl.rl.ac.uk/ 3 Documentation date: 8th February 2011

HSL_VH01 HSL ARCHIVE

be set on initial (INFO and on exit contain the current iteration number k and the index of the member of the
population which currently provides the smallest objective function value respectively.

2.2.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL VH01_WIND_UP(DIMEN, POP, EVAL, INFO)

DIMEN is a scalar INTENT(IN) argument of type VH01_DIMENSIONS which must be passed unaltered from
VH01_ITERATION.

POP is an array INTENT(INOUT) argument of type VH01_STRING and dimension PARAM%p which must be passed
unaltered from VH01_ITERATION. The component x of each member of the array will have been deallocated on
exit.

EVAL is a scalar INTENT(INOUT) argument of type VH01_EVALUATE which must be passed unaltered from
VH01_ITERATION. The component list will have been deallocated on exit.

INFO is a scalar INTENT(INOUT) argument of type VH01_INFORMATION which must be passed unaltered from
VH01_ITERATION. A successful call to VH01_WIND_UP is indicated when the component inform has the value
0. For other return values of inform, see Section 2.4

2.3 Reverse communication

A negative value of INFO VH01_ITERATION indicates that the user needs to take appropriate action before re-entering
the subroutine. Possible values are:

–1. The objective values of the strings indexed by EVAL%list(i), i=1,...,EVAL%changes, must be recomputed.
The value for string POP(j)_x must be formed in POP(j)_f. All other arguments must be left unaltered and
VH01_ITERATION re-entered.

–2. The current smallest objective value occurs for string INFO_best at the end of iteration INFO_iter. The user
may check for termination at this stage. If convergence has not occurred, all arguments must be left unaltered
and VH01_ITERATION re-entered prior to another iteration. The user may wish to consider whether excessive
iterations have occurred, whether the objective function value has reached a known limit, or if some other
measure of convergence has been achieved.

2.4 Warning and error messages

A positive value of INFO VH01_INITIALIZE or VH01_WIND_UP indicates that an error has occurred. No further calls
should be made until the problem has been resolved. Possible values are:

1. (VH01_INITIALIZE only) An array allocation has failed. A message indicating the offending array is written
on unit INFO%errors.

2. (VH01_WIND_UP only) An array deallocation has failed. A message indicating the offending array is written on
unit INFO%warnings.

2.6 Information printed

If INFO%progress is positive, information about the progress of the minimization will be printed on unit
INFO%progress. Each time an improvement in objective function is made, a line indicating the iteration on which
the event occurs, the value of the function and the corresponding binary string is printed.

3 GENERAL INFORMATION

Use of common: None.

Other modules used directly: HSL_FA14, HSL_ZA03.

All use is subject to licence. HSL_VH01 v 1.0.0
http://www.hsl.rl.ac.uk/ 4 Documentation date: 8th February 2011

HSL ARCHIVE HSL_VH01

Input/output: Output is under control of the arguments INFO%warnings, INFO%errors, and INFO%progress.

Restrictions: DIMEN%n ≥ 1, DIMEN%p ≥ 1, 0 ≤PARAM%xi ≤ 1, 0 ≤PARAM%mu ≤ 1.

4 METHOD

There are many variants of the genetic algorithm. The version implemented in HSL_VH01 is as follows.
(0), (0)An initial population of (preferably different) binary strings { x ...,x } is specified, and the value of the objective1 p

(0), (0)function F ...,F for each member of the population is calculated. An iteration counter k is initialized as 1. We1 p

describe the k–th iteration.
(k)A probability function p is associated with each member of the current population. In HSL_VH01, this probabilityi

is given as

(k) (k)F −Fmax i(k)p = ,i p
(k) (k)(F −F)∑ max i

i=1

(k) (k)where F =maxF . The iteration comprises four essential steps, namely selection, crossover, mutation andmax i
1≤i≤p

substitution. Many sophisticated crossover and mutation strategies have been suggested, and we provide simple
versions here.

(k), (k)In the selection step, an ordered set of 2m different individuals, { y ...,y } , from the current population are1 p

selected. Each is selected as follows. A random integer i in [1,p] is determined. If i has not already been selected, it is
(k)selected provided that p >φ, where φ is a uniform random number between zero and one.i

(0), (k)In the crossover step, each pair { y ...,y } is crossed over provided that φ>ξ, where ξ is a real constant in [0,1],2j 2j+1
(0), (k)and once again φ is a uniform random number between zero and one. This yields m pairs of children { z ...,z }2j 2j+1

(which are identical to their parents with probability 1 −ξ). We allow two crossover strategies. In two-point crossover,
two positions, l and l are chosen at random; in one-point, a single random position l is selected, and l is set to p.1 2 1 2
The pair of strings x and y are now crossed over, that is components between l and l of x and y are interchanged. If1 2
wrap around is allowed, and l > l , components l to p and 1 to l of x and y are interchanged instead of l to l .1 2 1 2 2 1

(k)In the mutation step, each individual z mutates provided that φ>µ, where µ is another real constant in [0,1], andi
(k)once again φ is a uniform random number between zero and one. This provides 2m possibly mutated children w i

(k)(which are identical to their parents z with probability 1 −µ).i

Our mutation strategy is very simple. A position l is chosen at random. The component of the mutating string in
position l switches parity, that is, if position l contains a zero, its value is changed to one, and vice versa.

Finally, in the substitution step, another ordered set of 2m different individuals from the current population are
selected. Each is selected as follows. A random integer i in [1,p] is determined. If i has not already been selected, it is

(k)selected provided that p <φ, where once again φ is a uniform random number between zero and one. The individuali

which gives the lowest function value amongst the k–th population is also excluded. The 2m individuals in the
(k)selected set are then replaced in the population by the 2m crossed-over, mutated individuals w to form the k + 1–sti

(k+1), (k+1) (k+1), (k+1)population { x ...,x } . The values of the objective function, F ...,F , for the new population are calculated,1 p 1 p

and the iteration counter k incremented by one.

Reference

There are many references on the subject. A good, simple introduction is provided by

Pirlot, M. (1992). General local search heuristics in combinatorial optimization: a tutorial, Belgium Journal of
Operations Research, Statistics and Computer Science, 32, 7-68.

All use is subject to licence. HSL_VH01 v 1.0.0
http://www.hsl.rl.ac.uk/ 5 Documentation date: 8th February 2011

HSL_VH01 HSL ARCHIVE

5 EXAMPLE

Suppose we wish minimize a function of 48 binary variables, whose value is the sum of the these variables, and that
we wish to continue so long as the function is positive. Then we might use the following code:

PROGRAM HSL_VH01_SPEC
USE HSL_FA14_DOUBLE, ONLY: FA14_RANDOM_INTEGER
USE HSL_VH01_DOUBLE
IMPLICIT NONE
INTEGER, PARAMETER :: length_X = 48 ! length of string
INTEGER, PARAMETER :: npop = 100 ! population size
INTEGER, PARAMETER :: mcross = 10 ! max. number crossovers/generation
INTEGER, PARAMETER :: itmax = 1000000 ! max number of generations
INTEGER :: i, j, random_integer
TYPE (VH01_DIMENSIONS) :: DIMEN
TYPE (VH01_STRING), DIMENSION(npop) :: POP
TYPE (VH01_PARAMETERS) :: PARAM
TYPE (VH01_EVALUATE) :: EVAL
TYPE (VH01_INFORMATION) :: INFO
DIMEN%n = length_X ; DIMEN%p = npop ; DIMEN%m = mcross ! set dimensions
INFO%warnings = 6 ; INFO%errors = 6 ; INFO%progress = 6 ! set i/o units
CALL VH01_INITIALIZE(DIMEN, POP, PARAM, EVAL, INFO)
IF (INFO%inform > 0) GO TO 100
DO j = 1, DIMEN%p ! Select an initial population x1, ... , xN

DO i = 1, DIMEN%n
CALL FA14_RANDOM_INTEGER(EVAL%seed, 2, random_integer)
POP(j)%x(i) = random_integer == 2

END DO
POP(j)%f = COUNT(POP(j)%x) ! Evaluate the objective function

END DO
DO ! start of main iteration

CALL VH01_ITERATION(DIMEN, POP, PARAM, EVAL, INFO)
IF (INFO%inform == - 1) THEN ! Evaluate the objective function

DO i = 1, EVAL%changes
j = EVAL%list(i)
POP(j)%f = COUNT(POP(j)%x)

END DO
CYCLE

ELSE IF (INFO%inform == - 2) THEN ! Check for termination
IF (INFO%iter <= itmax .AND. &

POP(INFO%best)%f > 0.0_working) CYCLE
IF (INFO%iter > itmax) THEN ; INFO%inform = 3
ELSE ; INFO%inform = 0
END IF

ENDIF
EXIT

END DO ! end of main iteration
100 CONTINUE

IF (INFO%inform == 0) THEN
WRITE(6, "(/, ' best objective ', ES12.4, /, ' string ', &

&(80I1)) ") POP(INFO%best)%f, &
MERGE(1, 0, POP(INFO%best)%x(:))

ELSE
WRITE(6, "(' Error exit: inform = ', I6)") INFO%inform

END IF
CALL VH01_WIND_UP(DIMEN, POP, EVAL, INFO)
END PROGRAM HSL_VH01_SPEC

All use is subject to licence. HSL_VH01 v 1.0.0
http://www.hsl.rl.ac.uk/ 6 Documentation date: 8th February 2011

HSL ARCHIVE HSL_VH01

This produces the following output:

It 1 obj 1.80E+01 str 000101010101001000111100111010100000010110000000
It 4 obj 1.40E+01 str 011010100100000100010001001000100001000000001011
It 14 obj 1.30E+01 str 011010100100000100010000001000100001000000001101
It 17 obj 1.20E+01 str 011010100100000100010000001000100001000000001100
It 20 obj 9.00E+00 str 000000100100000100010000001000100001000000001100
It 28 obj 8.00E+00 str 000000100100000000010000001000100001000000001100
It 45 obj 7.00E+00 str 000000100100000100010000000000100001000000001000
It 58 obj 6.00E+00 str 000000100100000100000000000000100001000000001000
It 74 obj 5.00E+00 str 000000100100000100000000000000100001000000000000
It 81 obj 4.00E+00 str 000000100100000100000000000000000001000000000000
It 99 obj 3.00E+00 str 000000100000000100000000000000100000000000000000
It 107 obj 2.00E+00 str 000000100000000100000000000000000000000000000000
It 126 obj 1.00E+00 str 000000000000000100000000000000000000000000000000
It 193 obj 0.00E+00 str 00

best objective 0.0000E+00
string 00

All use is subject to licence. HSL_VH01 v 1.0.0
http://www.hsl.rl.ac.uk/ 7 Documentation date: 8th February 2011

