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1 SUMMARY

Solves the linear programming problem, finds x={ x } which minimizes the linear functionj n

n

f(x) = c x∑ j j
j=1

subject to the linear constraints
n

a x ≤ b i=1,2,...,l∑ ij j i
j=1
n

a x = b i=l+1,.,m∑ ij j i
j=1

where x ≥ 0 i=1,2,...,n.j

The Revised Simplex method is used where an inverse of the basis is maintained and updated at each iteration.
There is an option to allow the basis inverse to be cleaned up at the end of the calculation and the solution checked for
ill-conditioning and if necessary the calculation is restarted. Another option allows the user to force specific columns
of the LP tableau into the initial basis.

LA01B returns an error indicator and an estimate of the ill-conditioning. Several print options are offered.

ATTRIBUTES — Version: 1.0.0. Types: LA01B, LA01BD. Calls: FD05. Original date: January 1975. Origin:
M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version:

CALL LA01B(N,M,L,A,B,C,X,F,IA,IPR,IND,WK,IER)

The double precision version:

CALL LA01BD(N,M,L,A,B,C,X,F,IA,IPR,IND,WK,IER)

N is an INTEGER variable and is set by the user to n the number of unknowns. Restriction: n > 0.

M is an INTEGER variable and is set by the user to m the number of constraints. Restrictions: m ≤ n + l, m > 0.

L is an INTEGER variable and must be set by the user to l the number of inequality constraints. Restriction:
0 ≤ l ≤ m.

A is a two-dimensional REAL (DOUBLE PRECISION in the D version) array with first dimension IA. The elements
of A must be set to the elements of the constraint matrix A={ a } . The first l rows of A must contain theij m×n

inequality constraints. This argument is not altered by the subroutine.

B is a REAL (DOUBLE PRECISION in the D version) array which the user must set to the right hand sides of the
constraints b i=1,2,...,m. This argument is not altered by the subroutine.i

C is a REAL (DOUBLE PRECISION in the D version) array which the user must set to the cost function coefficients
c j=1,2,...,n. This argument is not altered by the subroutine.j

X is a REAL (DOUBLE PRECISION in the D version) array which is set by the subroutine to the solution x j

j=1,2,...,n. With certain error conditions X will not be set and for other error conditions it may not contain the
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best possible solution, see §2.3.

F is a REAL (DOUBLE PRECISION in the D version) variable and is set by the subroutine to the optimum function
value f(x).

IA is an INTEGER variable and must be set by the user to the first dimension of the array A, e.g. if space is
allocated for A by

DIMENSION A(100,40)

set IA=100.

IPR is an INTEGER variable and provides print options. It must be set by the user to one of the following values:

IPR=0 no printing
IPR≥1 final results
IPR≥2 cost value at each iteration
IPR≥3 basis variables at each phase 2 iteration
IPR≥4 basis variables at each phase 1 iteration

The Fortran stream number for the output is specified in COMMON, see §2.2.

IND is an INTEGER array of length at least m+1. It can be used to force columns of the LP tableau into the initial
basis, see NBASIS in §2.2 for details. If NBASIS=0, which it is unless the user has reset it, IND need not be set.
On return IND will contain the column numbers k i=1,2,...,m of the final basis.i

WK is a REAL (DOUBLE PRECISION in the D version) array which the user must provide for the subroutine to use for
work space. It must be at least (m+1)(m+3) words long. See §2.4 for details of the contents of WK on return.

IER is an INTEGER variable set by the subroutine to an error return flag. IER≤0 signals a successful solution, see
§2.3 for other details.

2.2 The COMMON area

The subroutine uses two COMMON areas which the user may also reference.

The single precision version

COMMON/LA01D/EPS,MAXINV,NBASIS,LP,LPD,TOL
COMMON/LA01G/TAG

The double precision version

COMMON/LA01DD/EPS,MAXINV,NBASIS,LP,LPD,TOL
COMMON/LA01GD/TAG

EPS is a REAL (DOUBLE PRECISION in the D version) variable (initial value = 0) and is set by the subroutine to the
magnitude of the maximum marginal cost associated with a basic variable. Basic marginal costs should be zero,
in practice a good result has been obtained if EPS is of the order of the machine precision of the computer.
Larger values will indicate ill-conditioning.

MAXINV is an INTEGER variable (initial value = 1) and specifies a limit on the number of basis re-inversions that the
subroutine is allowed to make. MAXINV can be reset by the user. If MAXINV=0 the subroutine cannot make a
final check on the solution by cleaning up the basis inversion and re-trying.

NBASIS is an INTEGER variable (initial value = 0) and can be used to force specific columns from the LP tableau into
the initial basis. To do this set NBASIS to the number of columns to go in and IND(J) J=1,NBASIS to the

thtableau column numbers. Note that a slack column, associated with the i inequality say, will be column
number n+i. If NBASIS<M the rest of the basis will be chosen from the tableau by the subroutine.

LP is an INTEGER variable (initial value = 6 for the line printer) and specifies the Fortran output stream to be used
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for printing results and iteration details. LP may be reset by the user to any valid stream number. If LP=0
printing is suppressed even if IPR>0.

LPD is an INTEGER variable (initial value = 6 for the line printer) specifies the Fortran output stream number to be
used for diagnostic messages. Treat as LP.

−4 −10TOL is a REAL (DOUBLE PRECISION in the D version) variable (initial value 10 or 10 in the double precision
version) and specifies the tolerance allowed on the error in the basis marginal costs, see EPS. If EPS>TOL an
error return is made, see IER=2, §2.3. The user may reset TOL provided TOL≥0.

TAG is a CHARACTER*8 text string (initial value ‘ LA01B’ ( ‘ LA01BD’ double precision version)) and is used
to tag the output messages. The user may reset the tag to another name but it should be right justified in the field
for the best appearance.

2.3 The error returns (IER)

IER≤0 indicates a successful return. IER=0 indicates that the final solution required no additional re-inversions of the
basis apart from the final one which is used as a check on the solution. If IER<0, the absolute value of IER
gives the number of additional re-inversions needed before a final solution was obtained. This would indicate
that ill-conditioning was present at some stage although the final basis may be free from it. If the user has
suppressed re-inversion by setting the common variable MAXINV=0 the subroutine cannot check for
ill-conditioning in this way. It will signal a successful calculation, IER=0, and assume that the user will check
for ill conditioning himself.

IER=1 indicates that re-inversion was allowed but the number allowed was insufficient to reach the optimum
solution. The solution returned is likely to be ill-conditioned and not the best.

IER=2 indicates that the maximum marginal cost associated with a basis variable exceeds the tolerance level set in
TOL, §2.2 i.e. EPS>TOL. This indicates ill-conditioning and although a final solution was reached it is likely to
have poor accuracy.

IER=3 no solution is returned because phase 1 of the simplex method failed to find a feasible solution, i.e. the
constraints define a null region.

IER=4 no solution is returned because the subroutine has failed to find m independent columns from the LP tableau
to form a basis.

IER=5 the solution to the problem is found to be unbounded, i.e. unconstrained, no solution is returned.

IER=6 one of the arguments N, M or L is invalid. All three values are printed.

2.4 The contents of the workspace

On return from the subroutine the workspace will contain information which may be of some interest to the user. It
is divided up into the segments detailed below. Section 4 should be consulted for the definition of some of the terms
used.

Segment 1 is m+1 words long. On return with IER≤2 or IER=5 the first m words will contain the m marginal costs
Tassociated with the basis variables, i.e. v = chat U a i=1,2,...,m (see §4). These marginal costs should be ofki i

the order of the word precision of the computer.

Segment 2 is m+1 words long. On all returns, except IER=4, this segment will contain the current basis variables w i

i=1,2,...,m and w = f(x).m+1

Segment 3 is an (m+1) by (m+1) segment containing the transpose of the inverse U of the basis. If IER=4 it will be
incomplete. If phase II had begun it will contain the extended inverse Ũ (see §4) with the objective function

throw in the (m+1) column.
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3 GENERAL INFORMATION

Use of Common: the subroutine uses a Common area LA01D/DD, see §2.2.

Workspace: the user provides the workspace through an argument WK, (m+1)(m+3) words are required.

Other subroutines: the library subroutine FD05 is called. LA01B/BD also calls the private subroutines LA01C/CD
and LA01E/ED.

Input/Output: private options are provided and diagnostic printing is possible. These are normally printed on the line
printer but may be suppressed, see IPR in §2.1 and LP and LPD in §2.2.

System dependence: none.

Restrictions:

n > 0,

2 ≤m ≤ n+l,

0 ≤ l ≤ m.

4 METHOD

The method used is that of the ‘Revised Simplex’ method with a modification which allows the algorithm to be
started with at most only one ‘artificial’ variable. In the brief description that follows we assume the reader is familiar
with the basic method and concentrate more on its implementation in LA01B/BD.

Take the problem to be that given in the summary. The LP tableau Â={ â } is defined as the extension ofij m×n+1
A={ a } by the partial identity matrix I , consisting of the first l columns of I, which are associated with the l slackij m×n l

variables introduced to make the inequality constraints into equalities. The first step is to attempt to select m
independent columns from A to form the initial basis H = ahat i=1,2,...,m. This is done by building the inverse of thek i

−1basis U=H a column at a time using the rank one update formula
Tu rU = U − U (ahat − e )(r) (r−1) (r−1) j r σ

T th Twhere u is the r row of U and σ = u ahat . The column ahat to be entered in the basis is chosen byr (r−1) r j j
Tσ = max|u ahat | in order to ensure stability. The initial inverse is U = I and if the user chooses not to force columnsr i (0)

i

into the basis the subroutine will put in the l slack columns, I , first and start the sequence from U = I .l (l) l

If the user has chosen to force columns into the basis the same formula is used but the set of possible columns is
initially restricted to his set. When these are exhausted the rest of the LP tableau is included in the search.

When building the inverse matrix U, columns that become basic are retained in the search set to aid the detection of
a rank deficient tableau, because if a basic column is chosen twice it strongly indicates that the tableau does not
contain m independent columns.

Note that the subroutine holds the inverse U in transposed form so that row operations, which are most frequent,
become column operations in the Fortran code.

After the initial inverse has been built the current LP solution w = Ub is checked against the positivity constraints
w ≥ 0 i=1,2,...,m. If these are all satisfied phase II of the simplex method is entered, otherwise we do a phase I.i

To introduce the artificial variable for phase I we implicitly extend the tableau by one column
m

ahat = b − ahat .∑ kn+l+1 i
i=1
i≠j

When this column replaces ahat in the basis the current solution becomes w = 1 i=1,2,...,m. The column k is chosenk i jj
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to preserve stability and turns out to be chosen from max|w |. Note that if at least one w < 0 this cannot be zero. Ini i

phase I we attempt to iterate out the artificial variable w by minimizing it, this will mean that the marginal costs willk j
Tbe e Uahat = u ahat. If the constraints have no feasible solution phase I will fail to remove w and the subroutinek k kj j j

will error return. If w is removed phase II is entered.k j

TTo begin phase II the real cost function is brought into the problem by adding an extra row −chat to the tableau.
The subroutine then works with an m+1 by m+1 inverse

U :ns 0
Ũ = .. ..

Tchat U : 1k

Twhere chat = ĉ i=1,2,...,m is the basis set of cost coefficients. The marginal costs will then be chat Uahat − ĉkk k i ii

i=1,2,...,n+l and we choose the largest of these to decide which column comes into the basis. If no marginal cost is
found greater than zero, or if a column that is already basic is chosen, we have finished the LP iterations. Otherwise
we choose the column to leave the basis, update the inverse and solution and continue the iterations using the normal
linear programming rules.

If we have finished the iterations the basis is re-inverted and the solution checked. If we have really reached the
solution this will be confirmed and a successful return to the caller is made. If ill-conditioning was present causing the
basis inverse to be bad the re-inversion may show that we were not at the solution at all. In this case we carry on with
the iterations either with phase I, if the cleaned up solution was found to be infeasible, or with phase II. The process
continues for as many times as the subroutine is allowed to re-invert or when a proper solution is reached.

Before returning to the caller the subroutine computes the final marginal costs associated with the basis, i.e.
Tv = chat Ua − ĉ i=1,2,...,m. Because these give some measure of the orthogonality of the basis and its inverse theyk ki k i i

are a useful guide to the condition of the basis. Theoretically they should be zero but in practice will be or order of the
relative rounding error in the computer.
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