1 SUMMARY

Solves the linear least squares problem by the so-called normal equations method, i.e. given an over-determined system of m linear algebraic equations in n unknowns

$$
\sum_{j=1}^{n} a_{i j} x_{j l}=b_{i l} \quad i=1,2, \ldots, n \quad l=1,2, ., k
$$

$$
m \geq n
$$

represented by $\mathbf{A X}=\mathbf{B}$, sets up and solves the system $\mathbf{A}^{T} \mathbf{A X}=\mathbf{A}^{T} \mathbf{B}$. The solution so obtained is such that the sums of squares of the equation residuals

$$
S_{l}=\sum_{i=1}^{m}\left\{\sum_{j=1}^{n} a_{i j} x_{j l}-b_{i l}\right\}^{2} \quad l=1,2,,, k
$$

are minimized.
Cholesky decomposition is used to solve the system. Equations with more than one right-hand side can be solved and the user has options to obtain equation residuals, sum of squares values and the inverse $\mathbf{V}=\left\{\mathbf{A}^{T} \mathbf{A}\right\}^{-1}$ which is usually required for the variance-covariance matrix.
ATTRIBUTES - Version: 1.0.0. Remark: When there are many unknowns the method is likely to give poor results particularly when applied to fitting polynomials; try MA14A or for polynomials VC01A. Types: MA09A; MA09AD. Calls: MA08, and MA10. Original date: June 1964. Origin: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version:
CALL MA09A (A, B, V, X, R, M, N, K, IA, IB, IV, IR, IFAIL, IOPT)
The double precision version:
CALL MA09AD (A, B, V, X, R, M, N, K, IA, IB, IV, IR, IFAIL, IOPT)

A is a two-dimensional REAL (DOUBLE PRECISION in the D version) array with dimensions at least m by n (the first dimension specified in IA), which must be set by the user to the elements of the matrix \mathbf{A}, i.e. put $a_{i j}$ $i=1,2, \ldots, m j=1,2, \ldots, n$ into $A(\mathrm{I}, \mathrm{J}) \mathrm{I}=1, \mathrm{M} \mathrm{J}=1, \mathrm{~N}$. This argument is not altered by the subroutine.

B is a two-dimensional REAL (DOUBLE PRECISION in the D version) array with dimensions at least m by k (the first dimension specified in IB), which must be set by the user to the elements of the right-hand side matrix \mathbf{B}, i.e. put $b_{i l} i=1,2, \ldots, m l=1,2, \ldots, k$ into $B(I, L) I=1, M L=1, K$. This argument is not alter by the subroutine.
$\mathrm{V} \quad$ is a two-dimensional REAL (DOUBLE PRECISION in the D version) array of dimensions at least n by n (first dimension specified in IV), which is set by the subroutine to the inverse matrix $\mathbf{V}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1}$ if requested or overwritten as workspace otherwise.
$\mathrm{X} \quad$ is a two-dimensional REAL (DOUBLE PRECISION in the D version) array of dimensions at least n by k (first dimension must be IV the same as that of V), which is set by the subroutine to the elements of the solution matrix \mathbf{X}, i.e. $\mathrm{X}(\mathrm{J}, \mathrm{L}) \mathrm{J}=1, \mathrm{~N} \mathrm{~L}=1, \mathrm{~K}$ will be set to $x_{j l} j=1,2, \ldots, n l=1,2, \ldots, k$.
$\mathrm{R} \quad$ is a two-dimensional REAL (DOUBLE PRECISION in the D version) array of dimensions at least $m+1$ by (first dimension specified in IR), which, if requested, is set by the subroutine to the equation residuals, i.e. $R(I, L)$ $\mathrm{I}=1, \mathrm{M} \mathrm{L}=1, \mathrm{~K}$ will be set to

$$
r_{i l}=\sum_{j=1}^{n} a_{i j} x_{j l}-b_{i l} \quad i=1,2, \ldots, m l=1,2, \ldots, k
$$

and the sums of squares

$$
s_{l}=\sum_{i=1}^{m} r_{i l}^{2} \quad l=1,2, \ldots, k
$$

will be returned in $R(M+1, L) L=1, K$. If residuals are not requested R is not used.
M is an INTEGER variable which must be set by the user to m the number of equations. This argument is not altered by the subroutine. Restriction: $m \geq n$.
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the number of unknowns. This argument is not altered by the subroutine.

K is an INTEGER variable which must be set by the user to k the number of right-hand sides (number of columns in \mathbf{B}. This argument is not altered by the subroutine.
IA is an INTEGER variable which must be set by the user to the first dimension of the array A. This argument is not altered by the subroutine.

IB is an INTEGER variable which must be set by the user to the first dimension of the array B. This argument is not altered by the subroutine.

IV is an INTEGER variable which must be set by the user to the first dimension of the arrays V and X . This argument is not altered by the subroutine.

IR is an INTEGER variable which must be set by the user to the first dimension of the array R . This argument is not altered by the subroutine.

IFAIL is an INTEGER variable set by the subroutine to indicate the success or failure of the calculation. The following values are possible

0 successful
1 the matrix $\mathbf{A}^{T} \mathbf{A}$ was found to be not positive definite, possibly because the rank of the matrix \mathbf{A} was less than n. A diagnostic is printed and an immediate return to the caller is made.

IOPT is an INTEGER variable which must be set by the user to select one of the different options offered by the subroutine. The values for IOPT and the options are as follows:

1 calculate solution only.
2 solution and residuals (including sums of squares)
3 calculate only the inverse $\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1}$.
4 solutions, residuals (including sums of squares) and inverse.
This argument is not altered by the subroutine.

3 GENERAL INFORMATION

Use of Common: none.
Workspace: none.
Other subroutines: calls MA08A/AD, MA10A/AD .
Input/Output: possible diagnostic message.
Restrictions: $m \geq n$.

4 METHOD

The subroutine calls MA08A/AD to construct the normal equations $\mathbf{A}^{T} \mathbf{A X}=\mathbf{A}^{T} \mathbf{B}$ of the system $\mathbf{A X}=\mathbf{B}$ and then calls MA10A/AD to solve them using a Cholesky method.

