1 SUMMARY

To solve a system of n linear algebraic equations in n unknowns

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad i=1,2, \ldots, n
$$

when the coefficient matrix $\mathbf{A}=\left\{a_{i j}\right\}_{n \times n}$ is upper Hessenberg ($a_{i j}=0$ when $i>j+1$), or upper Hessenberg squared ($a_{i j}=0$ when $i>j+2$).

The subroutine may be re-entered to provide additional right-hand sides for the economic solution of systems with the same coefficient matrix \mathbf{A}.

Gaussian elimination with partial pivoting is used accumulating inner products double length.
ATTRIBUTES - Version: 1.0.0. Types: MA12A; MA12AD. Calls: FD05. Original date: July 1966. Origin: M.Reynolds*, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version:
CALL MA12A (A, N, IA, NOPT, MTYPE, B, IPR)

The double precision version:

```
CALL MA12AD (A,N,IA,NOPT,MTYPE,B,IPR)
```

A is a two-dimensional REAL (DOUBLE PRECISION in the D version) array of dimensions at least n by n (first dimension specified in IA), set by the user to the elements $a_{i j} i=1,2, \ldots, n, j=1,2, \ldots, n$ of the matrix \mathbf{A}. The lower triangular zero-part of the matrix need not be set. The array is overwritten by the subroutine.
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the number of equations. Restriction: $n \geq 2$ for Hessenberg case, $n \geq 3$ for Hessenberg squared case.

IA is an INTEGER variable which must be set by the user to the first dimension of the array A.
NOPT is an INTEGER variable which must be set by the user to select the re-entry option. If NOPT=1 the equation matrix \mathbf{A} is factorized and the equations solved. If NOPT $=2$ the factorization is assumed to have been done on a previous entry and the array A and the second row of the array B remain unchanged and the first row of the array B contains a new right-hand side.
MTYPE is an INTEGER variable which must be set by the user to indicate the type of matrix structure given in A. If MTYPE=1 the matrix is upper Hessenberg and if MTYPE=2 it is upper Hessenberg squared.
B is a two-dimensional REAL (DOUBLE PRECISION in the D version) array of dimension at least 2 by n consisting of two rows. $\mathrm{B}(1, \mathrm{I}) \mathrm{I}=1, \mathrm{~N}$ is set by the user to the right-hand side of the equations $b_{i} i=1,2, \ldots, n$ and will contain on return the solution $x_{j} j=1,2, \ldots, n . \mathrm{B}(2, \mathrm{I}) \mathrm{I}=1, \mathrm{~N}$ is used by the subroutine to hold the row interchanges and if the re-entry option is used these must not be altered.
IPR is an INTEGER variable which is used to turn off diagnostic printing. Normally it should be set to a nonzero value, then in the event of a near singular matrix being detected a diagnostic is printed. Set it to zero to suppress diagnostic printing.

3 GENERAL INFORMATION

Use of Common: none.
Workspace: the array A and the second row of B are used by the subroutine.
Other subroutines: calls FD05.
Input/Output: diagnostic message, see IPR.
Restrictions:
$n \geq 2$ (Hessenberg form).
$n \geq 3$ (Hessenberg squared form).

