1 SUMMARY

Calculates the minimax solution of a system of m linear algebraic equations in n unknowns, $m \geq n$, where the maximum element of the solution is subject to a simple bound. Given equations

$$
\sum_{j=1}^{n} a_{i j} x_{j}+b_{i}=0 \quad i=1,2, \ldots, m \quad m \geq n
$$

find the solution $x_{j} j=1,2, \ldots, n$ such that

$$
\max _{i}\left\{\left|\sum_{j=1}^{n} a_{i j} x_{j}+b_{i}\right|\right\}
$$

is minimized subject to the bounds $\left|x_{j}\right| \leq g j=1,2, \ldots, n$.
A variation of the 'exchange algorithm' is used that incorporates a technique for reducing the number of iterations, and which will also provide a defined solution even when the matrix $\mathbf{A}=\left\{a_{i j}\right\}_{n \times n}$ is rank deficient.

Described in K.Madsen and M.J.D.Powell, Harwell report R. 7954 (1975).
ATTRIBUTES - Version: 1.0.0. Types: MA19A; MA19AD. Original date: March 1974. Origin: K.Madsen, Copenhagen.

2 HOW TO USE THE PACKAGE

2.1 The argument lists

The single precision version
CALL MA19A (N, M, A, IA, B, G, EPS, X, RES, IREF)
The double precision version
CALL MA19AD (N, M, A, IA, B, G, EPS, X, RES, IREF)
$\mathrm{N} \quad$ is an INTEGER variable and must be set by the user to n, the number of unknowns. Restriction: $n>0$.
M is an INTEGER variable and must be set to m, the number of linear expressions under consideration. Restriction: $m>0$.

A is a REAL (DOUBLE PRECISION in the D version) two-dimensional array which the user must set to the coefficients $a_{i j}$, i.e. A $(i, j)=a_{i j}, i=1,2, \ldots, m, j=1,2, \ldots, n$. It is not changed by the subroutine.
IA is an INTEGER variable and must be set to the first dimension of the array A.
B is a REAL (DOUBLE PRECISION in the D version) array which the user must set to the constants b_{i}, i.e. $\mathrm{B}(\mathrm{i})=b_{i}, i=1,2, \ldots, m$. It is not changed by the subroutine.
G is a REAL (DOUBLE PRECISION in the D version) variable which must be set to the value of the bound g on the unknowns \mathbf{x}_{j}. Restriction: $g \geq 0$.

EPS is a REAL (DOUBLE PRECISION in the D version) variable which controls the accuracy of the solution, i.e. the solution will satisfy equation (3) in section 4 with $\varepsilon=E P S$. It has to be set to a non-negative value by the user, and normally EPS $=0$ will be a good value.

X is a REAL (DOUBLE PRECISION in the D version) array in which the subroutine will return the solution. The array should be of length at least n.

RES is a REAL (DOUBLE PRECISION in the D version) array which is used for working space. Its length must be at least $(n+1)(n+5)+m$. On exit it will contain the values

$$
\operatorname{RES}(\mathrm{i})=\sum_{j=1}^{n} a_{i j} x_{j}+b_{i}, \quad i=1,2, \ldots, m .
$$

Further, RES ($m+1$) will contain the value of h in equation (1) in section 4, and RES ($m+2$) will contain an upper bound for the expressions on the left-hand side of equation (3) in section 4.

IREF is an INTEGER array which is used for working space. Its length must be at least $4(n+1)+m$. On exit |IREF (i)|, $i=1,2, \ldots,(n+1)$, will contain information about which equations belong to the sets I_{D} and I_{B} defined in section 4.
$|\operatorname{IREF}(i)|>m$ will mean that the index |IREF (i)|-m is in the set I_{B}. Otherwise |IREF (i)| belongs to the set I_{D}. The sign of IREF (i) is the sign of s_{i} in equations (1) and (2) in section 4. Further IREF ($\mathrm{n}+2$) will give the number of elements in I_{B}, and $\operatorname{IREF}(\mathrm{n}+3)$ will give the number of iterations used by the method.

3 GENERAL INFORMATION

Use of common: None.
Workspace: Provided by the user, see arguments RES and IREF.
Other routines called directly: None.
Input/output: None.
Restrictions: $\quad n \geq 1, m \geq 1, g \geq 0, \varepsilon \geq 0$.

4 METHOD

The method will be described in a forthcoming Harwell report. The solution to the problem will be the solution to $(n+1)$ linear equations:

$$
\begin{align*}
& \sum_{j=1}^{n} a_{i j} x_{j}+b_{i}=s_{i} h, \quad \text { for } i \in I_{D} \tag{1}\\
& x_{i}=s_{i} g_{1} \quad \text { for } i \in I_{B} \tag{1}
\end{align*}
$$

where $h \geq 0$, and $g_{1}=g$ unless $h=0$ when $g_{1} \leq g$. Further $s_{i}= \pm 1$, and I_{B} contains n_{b} indices, I_{D} contains $\left(n+1-n_{b}\right)$ indices, $0 \leq n_{b} \leq n$. At the solution the inequalities

$$
\begin{equation*}
\left|\sum_{j=1}^{n} a_{i j} x_{j}+b_{i}\right| \leq h+\varepsilon \tag{3}
\end{equation*}
$$

and

$$
\left|x_{k}\right| \leq g
$$

will be satisfied for all relevant values of i and k.
Note that if the bounds instead of being of the form $\left|x_{j}\right| \leq g, j=1,2, \ldots, n$ are

$$
\left|x_{j}\right| \leq g_{j}, \quad j=1,2, \ldots, n
$$

the problem is easily re-written in the first form by scaling the coefficients $a_{i j}$.

