1 SUMMARY

Given that \mathbf{A} is a symmetric $\mathrm{n} \times \mathrm{n}$ matrix and given its inverse \mathbf{B}, to replace \mathbf{B} by the $(n-1) \times(n-1)$ matrix which is the inverse of the matrix obtained by deleting the last row and column of \mathbf{A}.

ATTRIBUTES - Version: 1.0.0. Types: MB04A, MB04AD. Original date: May 1964. Origin: M.J.D. Powell, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version
CALL MB04A (B,N,IDIM)
The double precision version
CALL MB04AD (B,N,IDIM)
Note that \mathbf{A} does not appear in the argument list.
B is a REAL (DOUBLE PRECISION in the D version) array for the elements of the matrix \mathbf{B}.
$\mathrm{N} \quad$ is an INTEGER giving the dimension of the original matrix \mathbf{B}.
IDIM is an INTEGER which specifies the first dimension of the array \mathbf{B}, so that in the calling routine there will normally be a statement of the form

```
DIMENSION B(IDIM, )
```


3 GENERAL INFORMATION

Use of common: None.
Workspace: None.
Input/output: None.

Restrictions:

$$
\mathrm{N} \geq 2
$$

$$
\mathrm{B}(\mathrm{~N}, \mathrm{~N}) \neq 0
$$

4 METHOD

The required matrix is calculated as

$$
\mathbf{B}_{0}-\frac{1}{b} \beta \beta^{T}
$$

where the original \mathbf{B} is partitioned into

$$
\left(\begin{array}{cc}
\mathbf{B}_{0} & \beta \\
\beta^{T} & b
\end{array}\right) .
$$

