## 1 SUMMARY

Given that $\mathbf{A}$ is a symmetric $n \times n$ matrix and given that $\mathbf{B}$ is the $(n-1) \times(n-1)$ matrix which is the inverse of the matrix obtained by deleting the last row and column of $\mathbf{A}$, to replace $\mathbf{B}$ by the inverse of $\mathbf{A}$.

ATTRIBUTES - Version: 1.0.0. Types: MB05A, MB05AD. Original date: May 1964. Origin: M.J.D. Powell, Harwell.

## 2 HOW TO USE THE PACKAGE

### 2.1 The argument list and calling sequence

The single precision version
CALL MB05A (A, B, N, IDIM)
The double precision version

```
CALL MB05AD (A,B,N,IDIM)
```

A is a REAL (DOUBLE PRECISION in the $D$ version) array for the elements of the matrix $\mathbf{A}$.
$B \quad$ is a REAL (DOUBLE PRECISION in the $D$ version) for the elements of $\mathbf{B}$.
$\mathrm{N} \quad$ is an INTEGER giving the dimension of $A$.
IDIM is an INTEGER specifying the first dimensions of the arrays $\mathbf{A}$ and $\mathbf{B}$, so that in the calling routine there will normally be a statement of the form

```
DIMENSION A(IDIM, ), B(IDIM, )
```


## 3 GENERAL INFORMATION

Use of common: None.
Workspace: None.
Input/output: None.

## Restrictions:

$$
\mathrm{N} \geq 2
$$

## 4 METHOD

The matrix $\mathbf{A}$ and the required $\mathbf{B}$ are partitioned in the following way:

$$
\left(\begin{array}{cc}
\mathbf{A}_{0} & \alpha \\
\alpha^{T} & a
\end{array}\right) . \quad\left(\begin{array}{cc}
\mathbf{B}_{0} & \beta \\
\beta^{T} & b
\end{array}\right) .
$$

and the required parts of $\mathbf{B}$ are computed as follows: if

$$
y=\mathbf{A}_{0}^{-1} \alpha
$$

then

$$
\begin{aligned}
& b=\left[a-\alpha^{T} y\right]^{-1} \\
& \beta=-b y
\end{aligned}
$$

and

$$
\mathbf{B}_{0}=\mathbf{A}_{0}^{-1}-\beta y .
$$

