

PACKAGE SPECIFICATION

HSL ARCHIVE

1 SUMMARY

Given that **A** is a symmetric $n \times n$ matrix and given that **B** is the $(n-1) \times (n-1)$ matrix which is the inverse of the matrix obtained by deleting the last row and column of **A**, to replace **B** by the inverse of **A**.

ATTRIBUTES — Version: 1.0.0. Types: MB05A, MB05AD. Original date: May 1964. Origin: M.J.D. Powell, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version

CALL MB05A (A,B,N,IDIM)

The double precision version

CALL MB05AD (A,B,N,IDIM)

A is a REAL (DOUBLE PRECISION in the D version) array for the elements of the matrix A.

B is a REAL (DOUBLE PRECISION in the D version) for the elements of **B**.

N is an INTEGER giving the dimension of A.

IDIM is an INTEGER specifying the first dimensions of the arrays **A** and **B**, so that in the calling routine there will normally be a statement of the form

DIMENSION A(IDIM,), B(IDIM,)

3 GENERAL INFORMATION

Use of common: None.

Workspace: None.

Input/output: None.

Restrictions:

 $N \ge 2$

4 METHOD

The matrix **A** and the required **B** are partitioned in the following way:

$$\begin{pmatrix} \mathbf{A}_0 & \boldsymbol{\alpha} \\ \boldsymbol{\alpha}^T & \boldsymbol{a} \end{pmatrix}. \qquad \qquad \begin{pmatrix} \mathbf{B}_0 & \boldsymbol{\beta} \\ \boldsymbol{\beta}^T & \boldsymbol{b} \end{pmatrix}.$$

and the required parts of **B** are computed as follows: if

 $y = \mathbf{A}_0^{-1} \alpha$

then

 $b = [a - \alpha^T y]^{-1}$ $\beta = -by$ and

 $\mathbf{B}_0 = \mathbf{A}_0^{-1} - \boldsymbol{\beta} y.$