1 SUMMARY

To calculate \mathbf{A}^{\dagger} the generalized inverse of an m by $n(m \leq n)$ rectangular matrix \mathbf{A} in the special case that the rank of \mathbf{A} is equal to m, i.e. such that $\mathbf{A} \mathbf{A}^{\dagger} \mathbf{A}=\mathbf{A}$ which with full rank can be defined as $\mathbf{A}^{\dagger}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}$.

Householder type orthogonal transformations with row and column interchanges are used in a method described in M.J.D. Powell, AERE R.6072.

ATTRIBUTES - Version: 1.0.0. Types: MB11A; MB11AD. Original date: May 1969. Origin: M.J.D.Powell, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version:

CALL MB11A (M, N, A, IA, W)

The double precision version:

CALL MB11AD (M,N,A,IA,W)
M is an INTEGER variable set to m the number of rows in the matrix \mathbf{A}.
$\mathrm{N} \quad$ is an INTEGER variable set to n the number of columns in the matrix \mathbf{A}.
A is a REAL (DOUBLE PRECISION in the D version) two dimensional array which must be set to contain the elements of the matrix A. i.e. $A(I, J)=a_{i j} I=1,2, \ldots, M, J=1,2, \ldots, N$.
On exit the array A will have been overwritten by its generalised inverse so that $A(I, J)$ will be changed to the (I, J) th element of $\mathbf{A}^{\dagger T}$.
IA is an INTEGER variable set to the first dimension of the array A. Note that we must have IA \geq M.
W is a REAL (DOUBLE PRECISION in the D version) workspace array of length at least $2 m+n$

3 GENERAL INFORMATION

Use of Common: none.
Workspace: all supplied by the user in the arrays W .
Other subroutines: None
Input/Output: none.

4 METHOD

First \mathbf{A} is transformed to a lower triangular form, by a sequence of m elementary Householder transformations, taking account of row and column interchanges. This lower triangular matrix is inverted, and then it is replaced by another matrix that contains the same information in a more convenient form. Because of this replacement, we can now re-apply the elementary transformations to the inverted matrix, to obtain the required generalised inverse, without requiring extra storage space. The method is given in M.J.D.Powell, 'A Fortran subroutine to invert a rectangular matrix of full rank', AERE Report R-6072.

