1 SUMMARY

Given a sparse matrix \mathbf{A} stored in a compact form and two vectors \mathbf{x} and \mathbf{y}, the routine evaluates either of the matrix-vector products $\mathbf{y}+\mathbf{A x}$ or $\mathbf{y}+\mathbf{A}^{T} \mathbf{x}$.

ATTRIBUTES - Version: 1.0.0. Types: MC09A, MC09AD. Original date: February 1972. Origin: J. K. Reid, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version

CALL MC09A (M, N, A, X, Y, TRANS, IRN, IP)
The double precision version
CALL MC09AD (M, N, A, X, Y, TRANS, IRN, IP)
M is an INTEGER variable set by the user to m the number of rows in the matrix. It is not altered by the subroutine.
$\mathrm{N} \quad$ is an INTEGER variable set by the user to n the number of columns in the matrix. It is not altered by the subroutine.

A is a REAL (DOUBLE PRECISION in the D version) array holding the nonzero matrix elements. These are stored by columns, e.g. $a_{11}, a_{13}, a_{19}, a_{21}, a_{22}, \ldots$. It is not altered by the subroutine.
$\mathrm{X} \quad$ is a REAL (DOUBLE PRECISION in the D version) array that must be set to contain the vector \mathbf{x}. It is not altered by the subroutine.

Y is a REAL (DOUBLE PRECISION in the D version) array that must be set to contain the vector \mathbf{y} and is overwritten by the result.

TRANS is a LOGICAL variable which should be set to .TRUE. if $\mathbf{y}+\mathbf{A}^{T} \mathbf{x}$ is required and to .FALSE. if $\mathbf{y}+\mathbf{A x}$ is required. It is not altered by the subroutine.

IRN, IP are INTEGER arrays used to describe the sparsity structure of A and must be set by the user. The nonzeros are stored by columns and IP (J) must point to the first nonzero of the J-th column, unless this column is null in which case IP (J) must equal IP ($\mathrm{J}+1$) ; IP ($\mathrm{N}+1$) -1 must equal the number of nonzeros. IRN (K) must hold the row number of the K-th nonzero. IP has dimension $n+1$ and IRN has dimension equal to the number of nonzeros in \mathbf{A}.

3 GENERAL INFORMATION

Use of common: None.
Other routines called directly: None.
Input/output: None.
Workspace: None.

5 EXAMPLE OF USE

The following code reads the entries of a sparse matrix (in any order) and the vectors \mathbf{x} and \mathbf{y}. The matrix is then sorted, MC09 is called, and the result is printed.

REAL A 1000) , X (100) , Y (100)
INTEGER IRN(1000), ICN (1000), IP (101)
C READ ORDER AND NUMBER OF NONZEROS
$\operatorname{READ}(5, *) N, N Z$
C CHECK THAT N AND NZ ARE WITHIN BOUNDS
IF (N.LE.O.OR.N.GT.100) GO TO 40
IF (NZ.LE.O.OR.NZ.GT.1000) GO TO 40
C READ MATRIX NONZEROS AND VECTORS
$\operatorname{READ}(5, *)(\operatorname{IRN}(I), I C N(I), A(I), I=1, N Z),(X(I), I=1, N),(Y(I), I=1, N)$
C SORT THE MATRIX NONZEROS BY COLUMNS
CALL MC20A (N, NZ, A, IRN, IP, ICN, 0)
IP $(\mathrm{N}+1)=\mathrm{NZ}+1$
C FORM PRODUCT
CALL MC09A (N,N, A, X, Y, .FALSE., IRN, IP)
C WRITE PRODUCT
$\operatorname{WRITE}(6,10)(\mathrm{Y}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
10 FORMAT (' PRODUCT IS '/5F10.5)
40 STOP
END
For the data

$$
\mathbf{A}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 4 \\
0 & 6 & 0 & 8 \\
9 & 0 & 11 & 0 \\
0 & 14 & 0 & 16
\end{array}\right), \mathbf{x}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right), \mathbf{y}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

we could have as input

4	8		
4	4		16.
1	1		1.
4	2		14.
2	2		6.
3	1		9.
2	4		8.
3	3		11.
1	4		4.
1.	2.	3.	4.
0.	0.	0.	0.

and we would get the following output
PRODUCT IS
$17.00000 \quad 44.00000 \quad 42.00000 \quad 92.00000$

