

1 SUMMARY

To carry out a **rank one update** to a given **positive definite** or **semi-definite symmetric** matrix which is stored in a factorized form $\mathbf{A} = \mathbf{LDL}^T$, i.e. given a rank one matrix $\sigma \mathbf{z}\mathbf{z}^T$ (\mathbf{z} a real vector) forms $\tilde{\mathbf{A}} = \mathbf{A} + \sigma \mathbf{z}\mathbf{z}^T$.

The subroutine was written to be used by optimization subroutines and will also: (i) accumulate a sum of rank one updates, (ii) carry out projection and allied operations on \mathbf{A} which reduce the rank, and (iii) update rank deficient matrices where it is known from other considerations that the rank remains unchanged.

There are additional entry points which, factorize $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{T}$, recover \mathbf{A} from its factors, compute $\mathbf{A}\mathbf{x}$ or $\mathbf{A}^{-1}\mathbf{x}$, and obtain \mathbf{A}^{-1} in factored form.

The method is described in M.J.D. Powell and R. Fletcher, AERE TP.519.

ATTRIBUTES — Version: 1.0.0. Types: MC11A; MC11AD. Original date: January 1973. Origin: R.Fletcher, Harwell.

2 HOW TO USE THE PACKAGE

The matrix **A** is represented using the minimal storage of n(n+1)/2 elements where *n* is the dimension of the problem. To facilitate operating with **A**, a number of independent subroutines have been provided with entry names MC11B/BD, MC11C/CD, MC11D/DD, MC11E/ED and MC11F/FD. These perform operations including reducing a matrix to its factors, multiplying out the factors, operating with the factors of **A** on a vector **z** to obtain either **Az** or $\mathbf{A}^{-1}\mathbf{z}$, and replacing the factors of **A** by the matrix \mathbf{A}^{-1} . These facilities are described in more detail in §2.2.

2.1 Argument list

The single precision version

CALL MC11A(A,N,Z,SIG,W,IR,MK,EPS)

The double precision version

CALL MC11AD(A,N,Z,SIG,W,IR,MK,EPS)

- A is a REAL (DOUBLE PRECISION in the D version) array of n(n+1)/2 elements in which the matrix $\mathbf{A}=\mathbf{LDL}^T$ must be given in factored form. The order in which elements of L and D are stored is $d_1, l_{2,1}, l_{3,1}, ..., l_{n,1}, d_2, l_{3,2}, ..., l_{n,2}, ..., d_{n-1}, l_{n,n-1}, d_n$. The factors of the matrix $\tilde{\mathbf{A}} = \mathbf{A} + \sigma \mathbf{z} \mathbf{z}^T$ will overwrite those of A on exit.
- N is an INTEGER variable which must be set by the user to *n* the dimension of the problem. **Restriction:** $n \ge 1$.
- Z is a REAL (DOUBLE PRECISION in the D version) array of length at least n which must be set by the user to contain the vector z. The array Z is overwritten by the subroutine.
- SIG is a REAL variable which must be set by the user to σ . The value of σ is not restricted to ± 1.0 , but if $\sigma < 0$ then it must be known from other considerations that \tilde{A} is positive definite or semi-definite, apart from the effects of round-off error.
- W is a REAL (DOUBLE PRECISION in the D version) array of *n* elements. If $\sigma > 0$ then W is not used, and the name of any array can be inserted in the calling sequence. If $\sigma < 0$ then W is used as workspace. In addition for $\sigma < 0$ it may be possible to save time by setting in W the vector **v** defined by $\mathbf{L}\mathbf{v} = \mathbf{z}$. The ways in which this can occur are described under MK below.
- IR is an INTEGER variable which must be set by the user so that |IR| is the rank of \tilde{A} . If the rank of \tilde{A} is expected to be different from that of A, set $IR \le 0$. On exit from MC11A/AD, $IR \ge 0$ will contain the rank of \tilde{A} .

- MK is an INTEGER variable to be set by the user only when $\sigma < 0$, as follows. If the vector **v** defined by $\mathbf{L}\mathbf{v} = \mathbf{z}$ has not been calculated previously, set MK=0. If MC11E/ED has been used previously to calculate $\mathbf{A}^{-1}\mathbf{z}$, then **v** is a by-product of this calculation and is stored in the W parameter of MC11E/ED. In this case transfer **v** to the W parameter of MC11A/AD and set MK=1. If **z** has been calculated as $\mathbf{z} = \mathbf{A}\mathbf{u}$ for some arbitrary vector **u** using MC11D/DD, then again **v** is a by-product of the calculation and is available in the W parameter of MC11D/DD. In this case (or any other in which **v** is known) set **v** in the W parameter of MC11A/AD and set MK=2.
- EPS is a REAL (DOUBLE PRECISION in the D version) variable to be set only when $\sigma < 0$ and $\tilde{\mathbf{A}}$ is expected to have the same rank as \mathbf{A} . In the ill-conditioned cases a nonzero diagonal element of $\tilde{\mathbf{D}}$ (where $\tilde{\mathbf{A}} = \tilde{\mathbf{L}} \tilde{\mathbf{D}} \tilde{\mathbf{L}}^T$) might become so small as to be indeterminate. Two courses of action are possible. One is to introduce a small perturbation in order that $\tilde{\mathbf{A}}$ keeps the same rank as \mathbf{A} . This is the normal course of action and is achieved by setting EPS equal to the relative machine precision ε . The other course of action is to let the rank of $\tilde{\mathbf{A}}$ be one less than the rank of \mathbf{A} . This is achieved by setting EPS equal to zero.

2.2 The other entry points

Other entry points are provided to facilitate operating with **A** which is stored in compact form. In all of these A is a REAL one dimensional array of n(n+1)/2 elements where *n* is the dimension of the problem. Each entry point is an independent subroutine.

MC11B/BD Factorize a positive definite symmetric matrix.

The single precision version

CALL MC11B(A,N,IR)

The double precision version

CALL MC11BD(A,N,IR)

- A is a REAL (DOUBLE PRECISION in the D version) array of n(n+1)/2 elements which must contain the elements of **A** in the order $a_{1,1}, a_{2,1}, ..., a_{n,1}, a_{2,2}, a_{3,2}, ..., a_{n,2}, ..., a_{n-1,n-1}, a_{n,n-1}, a_{n,n}$: that is as successive columns of its lower triangle). On exit A will be over-written by the factors **L** and **D** in the form described in §2.1, argument A.
- N is an INTEGER variable which must be set by the user to *n* the dimension of the problem. **Restriction:** $n \ge 1$.
- IR is an INTEGER variable set by MC11B/BD to the rank of the factorization. If the factorization has been performed successfully IR=N will be set. If on return IR<N then the factorization has failed because **A** is not positive definite (possibly due to round-off error). In this case the factors of a positive semi-definite matrix of rank IR will be found in A. However the results of this calculation are unpredictable, and MC11B/BD should not be used in an attempt to factorize positive semi-definite matrices.

MC11C/CD Multiply out the factors \mathbf{LDL}^{T} to obtain **A**.

The single precision version

CALL MC11C(A,N)

The double precision version

CALL MC11CD(A,N)

- A is a REAL (DOUBLE PRECISION in the D version) array of n(n+1)/2 elements which must contain the elements of A factored in the form described in §2.1, argument A. On return the factors will have been over-written by the explicit matrix A, the order of the elements being the same as that described for input to MC11B/BD.
- N is an INTEGER variable which must be set by the user to *n* the dimension of the problem. **Restriction:** $n \ge 1$.

HSL ARCHIVE

MC11D/DD Calculate the vector $\mathbf{z}^* = \mathbf{A}\mathbf{z}$ where \mathbf{A} is in factored form.

The single precision version

CALL MC11D(A,N,Z,W)

The double precision version

CALL MC11DD(A,N,Z,W)

- A is a REAL (DOUBLE PRECISION in the D version) array of n(n+1)/2 elements which must contain the elements of **A** factored in the form described in §2.1, argument A.
- N is an INTEGER variable which must be set by the user to *n* the dimension of the problem. **Restriction:** $n \ge 1$.
- Z is a REAL (DOUBLE PRECISION in the D version) array of *n* elements which must be set by the user to the vector \mathbf{z} . On exit, Z contains the vector $\mathbf{z}^* = \mathbf{A}\mathbf{z}$.
- W is a REAL (DOUBLE PRECISION in the D version) array of *n* elements which is set by the subroutine to the vector **v** defined by $\mathbf{L}\mathbf{v}=\mathbf{z}^*$. If this vector is not of interest, replace W by Z in the calling sequence to obviate the need to supply extra storage.

MC11E/ED Calculate the vector $\mathbf{z}^* = \mathbf{A}^{-1} \mathbf{z}$ where \mathbf{A} is in factored form.

The single precision version

CALL MC11E(A,N,Z,W,IR)

The double precision version

CALL MC11ED(A,N,Z,W,IR)

- A is a REAL (DOUBLE PRECISION in the D version) array of n(n+1)/2 elements which must contain the elements of A factored in the form described in §2.1, argument A.
- N is an INTEGER variable which must be set by the user to *n* the dimension of the problem. **Restriction:** $n \ge 1$.
- Z is a REAL (DOUBLE PRECISION in the D version) array of *n* elements which must be set by the user to the vector **z**. On exit, Z contains the vector $\mathbf{z}^* = \mathbf{A}^{-1}\mathbf{z}$.
- W is a REAL (DOUBLE PRECISION in the D version) array of *n* elements which is set by the subroutine to the vector **v** defined by $\mathbf{L}\mathbf{v}=\mathbf{z}^*$. If this vector is not of interest, replace W by Z in the calling sequence to obviate the need to supply extra storage.
- IR is an INTEGER variable which must be set by the user to the rank of **A**.

MC11F/FD Calculate the explicit matrix A^{-1} from the factors of A.

The single precision version

CALL MC11F(A,N,IR)

The double precision version

CALL MC11FD(A,N,IR)

- A is a REAL (DOUBLE PRECISION in the D version) array of n(n+1)/2 elements which must contain the elements of **A** factored in the form described in §2.1, argument A. On exit this will be overwritten by the elements of the inverse matrix \mathbf{A}^{-1} , in the order $a_{1,1}^{-1}$, $a_{2,1}^{-1}$,..., $a_{n,n}^{-1}$ as is done by MC11B/BD.
- N is an INTEGER variable which must be set by the user to *n* the dimension of the problem. **Restriction:** $n \ge 1$.

IR is an INTEGER variable which must be set by the user to the rank of A.

Notes:

- (i) MC11F/FD should not be used to solve equations, in which case MC11E/ED should be used. MC11F/FD is intended for applications in which the explicit elements of A^{-1} must be examined, for example in the use of variance-covariance matrices.
- (ii) MC11E/ED and MC11F/FD both return without doing any calculation if IR is not equal to N.

3 GENERAL INFORMATION

Use of common: None.

Workspace: n(n+1)/2 + 2n words provided by the user in A, Z and W. If SIG>0 the array argument W is not used and may be dummied.

Other routines called directly: None.

Input/output: None.

Restrictions: None.

Timing: One call of MC11A/AD requires ~ n^2 multiplications, unless $\sigma < 0$ and MK=0 when the figure is ~ $1\frac{1}{2}n^2$. One call of any of MC11B/BD, MC11C/CD or MC11F/FD requires ~ $n^3/6$ multiplications. One call of either MC11D/DD or MC11E/ED requires ~ $n^2/2$ multiplications.