
MF36
PACKAGE SPECIFICATION HSL ARCHIVE

1 SUMMARY

To read a complex sparse matrix, coded in a Harwell-Boeing format with possible right-hand sides. The
subroutine reads assembled as well as unassembled matrices, and returns them in a column oriented compressed
sparse format. If the matrix being read is real MC36A/AD should be used.

ATTRIBUTES — Version: 1.0.0. Types: MF36A and MF36AD. Calls: FA04. Language: Fortran 77 (with extension
for COMPLEX*16). Original date: October 1995. Origin: I.S. Duff, Rutherford Appleton Laboratory. Licence: A
third-party licence for this package is available without charge.

2 HOW TO USE THE PACKAGE

2.1 The argument list

There is a single subroutine for both assembled and unassembled matrices, with or without right-hand sides.

The single precision version

CALL MF36A(NMAX,NZMAX,TITLE,ELT,NROW,NCOL,NNZERO,
* COLPTR,ROWIND,VALUES,MAXRHS,NRHS,NZRHS,RHSPTR,
* RHSIND,RHSVAL,GUESS,SOLN,IW,ICNTL,INFO)

The double precision version

CALL MF36AD(NMAX,NZMAX,TITLE,ELT,NROW,NCOL,NNZERO,
* COLPTR,ROWIND,VALUES,MAXRHS,NRHS,NZRHS,RHSPTR,
* RHSIND,RHSVAL,GUESS,SOLN,IW,ICNTL,INFO)

NMAX is an INTEGER variable that must be set by the user and must be greater than the number of columns of the
matrix to be read. This argument is not altered by the subroutine.

NZMAX is an INTEGER variable that must be set by the user and must be greater than the number of entries of the
matrix to be read. This argument is not altered by the subroutine.

TITLE is a CHARACTER variable of length 80 that need not be set by the user. On exit, TITLE will contain the title of
the matrix and its key.

ELT is a LOGICAL variable that need not be set by the user. On exit, it is .TRUE. if the matrix is in unassembled
element form and is .FALSE. otherwise.

NROW is an INTEGER variable that will be set by the subroutine to the number of rows of the matrix.

NCOL is an INTEGER variable that will be set by the subroutine to the number of columns of the matrix. For
unassembled element problems it will be set to number of elements.

NNZERO is an INTEGER variable that will be set by the subroutine to the number of entries of the matrix.

COLPTR is an INTEGER array of size NMAX+1 that need not be set by the user. On exit, COLPTR(I), I=1, ..., NCOL, will
hold the position in ROWIND of the first entry in column I. COLPTR(NCOL+1)–1 is the position of the last entry
in column NCOL. For unassembled element problems (ELT=.TRUE.), COLPTR will point to the start of each
element in array ROWIND.

ROWIND is an INTEGER array of size NZMAX that need not be set by the user. On exit, the first NNZERO positions will be
set to the row indices of the entries, ordered by columns. For unassembled element problems, it will be set to
the indices of the variables of each element.

All use is subject to licence. MF36 v 1.0.0
http://www.hsl.rl.ac.uk/ 1 Documentation date: 8th February 2011

MF36 HSL ARCHIVE

VALUES is a COMPLEX (COMPLEX*16 in the D version) array of size NZMAX that need not be set by the user. On exit,
the first NNZERO positions will contain the numerical values of the entries. For unassembled element problems,
it will contain contiguously the numerical values of each element held by columns. If the elements are
symmetric, then VALUES will hold the lower triangle by columns. If ICNTL(4) ≠ 0 or 1, VALUES is not accessed
and so could be a dummy array of length 1.

MAXRHS is an INTEGER variable that must be set by the user to the maximum number of right-hand sides. A zero or
negative value means that no right-hand sides will be read.

NRHS is an INTEGER variable that need not be set by the user. On exit, it will hold the actual number of right-hand
sides read. No right-hand sides will be read if ICNTL(4) ≠ 0 or 1, or if MAXRHS = 0.

NZRHS is an INTEGER variable that must be set by the user to the length of arrays RHSIND and RHSVAL. Normally this
will be much less than NZMAX but, in the event that this is set too low, a suitable value will be output in
INFO(7).

RHSPTR is an INTEGER array that need not be set by the user. It is only accessed if right-hand sides are read and the
right-hand sides are held in sparse format. If the right-hand sides are held in sparse format, RHSPTR(I) will, on
exit, be set to the position of the first entry in arrays RHSIND and RHSVAL of right-hand side I, I=1, ..., NRHS,
and RHSPTR(NRHS+1) will be set to the position immediately after the last entry in arrays RHSIND and RHSVAL.

RHSIND is an INTEGER array of length NZRHS that need not be set by the user and will be set to hold the indices of the
right-hand sides. It is only accessed if right-hand sides are read (NRHS > 1). If the right-hand sides are held as
full vectors, RHSIND(1) is set to –1, and no other entry of RHSIND is accessed. If the right-hand sides are in
elemental form, RHSIND(1) is not accessed.

RHSVAL is a COMPLEX (COMPLEX*16 in the D version) array of length NZRHS that need not be set by the user and will
be set to the right-hand side values. It is only accessed if right-hand sides are read (NRHS > 1). If the matrix is
assembled (ELT=.FALSE.), then each right-hand side is held contiguously. If the right-hand sides are held in
sparse format, RHSVAL(K) is the value of component RHSIND(K), K=1, ..., RHSPTR(NRHS+1)–1. If the matrix
is an unassembled element matrix (ELT=.TRUE.), the entries of the right-hand sides for element 1 immediately
precede these for element 2 and so on. In each case, the components for each right-hand side are held
contiguously.

GUESS is a COMPLEX (COMPLEX*16 in the D version) array that need not be set by the user. If INFO(2)=1, the first
NRHS*NROW entries will be set so that the I th component of guess J is in position GUESS((J-1)*NROW+I).

SOLN is a COMPLEX (COMPLEX*16 in the D version) array that need not be set by the user. If INFO(3)=1, the first
NRHS*NROW entries will be set so that the I th component of solution J is in position SOLN((J-1)*NROW+I).

IW is an INTEGER array of size NMAX that need not be set by the user and is used as a work array.

ICNTL is an INTEGER array of length 10 that contains control parameters and must be set by the user. Details of the
control parameters are given in Section 2.2. This array is not altered by the subroutine.

INFO is an INTEGER array of length 10 that need not be set by the user. On a successful return, INFO(1) is set to
zero. For nonzero values, see Section 2.3. For the meaning of the value of other components of INFO, see
Section 2.2.

2.2 Arrays for control and information

The components of the array ICNTL control the action of MF36A/AD and the first four components must be set by the
user before calling MF36A/AD. The remaining components are for possible future use and are currently not accessed.
They are not altered by MF36A/AD. The components of the array INFO provide information on the action of
MF36A/AD. They need not be set by the user.

ICNTL(1) must be set by the user to the unit number from which the matrix is to be read.

ICNTL(2) must be set by the user to the unit number of the device to which messages are sent. These messages

All use is subject to licence. MF36 v 1.0.0
http://www.hsl.rl.ac.uk/ 2 Documentation date: 8th February 2011

HSL ARCHIVE MF36

include data on the matrix as well as error messages. Messages are suppressed if ICNTL(2) < 0.

ICNTL(3) is not used in this routine.

ICNTL(4) must be set to 0 or 1 if the user wants numerical values. If ICNTL(4)=1, in cases where these are not
provided in the Harwell-Boeing input, the values are generated by the random number routine FA04. If
ICNTL(4)=0, real values will only be provided if they are present in the input data set. A value for ICNTL(4)
other than 0 or 1 will result in reals not being read or generated.

ICNTL(5) to ICNTL(10) are not currently used and are not accessed by the routine.

INFO(1) is set to 0 on successful exit and to a negative value in the event of an error (see Section 2.3).

INFO(2) is set to 1 if the matrix is symmetric, 2 if the matrix is skew symmetric, 3 if the matrix is Hermitian, or to
0 otherwise.

INFO(3) is set to 1 if there are starting guesses or to 0 otherwise.

INFO(4) is set to 1 if there are exact solutions given or to 0 otherwise.

INFO(5) is set to 1 if reals have been read or generated and to 0 otherwise.

INFO(6) is set to the number of right-hand sides if MAXRHS was not large enough to read them (see error
INFO(1)=–5) or if MAXRHS=0.

INFO(7) is set to the length of the arrays required to hold the right-hand sides (see error INFO(1)=–6).

INFO(8) to INFO(10) are set to zero.

2.3 Error diagnostics

A successful return from MF36A/AD is indicated by a value of INFO(1) equal to zero. A negative value of INFO(1)
is associated with an error message that will be output on unit ICNTL(2).

–1 The matrix has more columns than NMAX. The number is given in NCOL.

–2 The matrix has more entries than NZMAX. The number is given in NNZERO.

–3 The matrix is real. Subroutine MC36A/AD should be used.

–4 There is an error in the matrix data file. The matrix is not in Harwell-Boeing format.

–5 There are more right-hand sides than MAXRHS (with MAXRHS > 0). The number is given in INFO(6). In this case,
the matrix will have been read successfully.

–6 The right-hand side arrays are of insufficient length. NZRHS must be increased to the value given in INFO(7).
The number of right-hand sides that the subroutine was trying to read is given in INFO(6). In this case, the
matrix will have been read successfully.

–7 Return because at end of input file or input file null.

3 GENERAL INFORMATION

Workspace: IW of length NMAX.

Use of common: None.

Other routines called directly: MF36A/AD calls internal routines MF36B/BD and MF36C/CD that need not be called
by the user. The subroutines FA04A/AD from the Harwell Subroutine Library are also called.

All use is subject to licence. MF36 v 1.0.0
http://www.hsl.rl.ac.uk/ 3 Documentation date: 8th February 2011

MF36 HSL ARCHIVE

Input/output: Error messages and information on files are written to stream ICNTL(2).

3.1 Storage of sparse matrices.

We describe here the Harwell-Boeing storage format as described in the Users’ guide of the Harwell-Boeing
collection.

Duff, I. S., Grimes, R. G., and Lewis, J. G. (1989). Sparse matrix test problems. ACM Trans. Math. Softw. 15, 1-14.

Duff, I. S., Grimes, R. G., and Lewis, J. G. (1992). Users’ Guide for the Harwell-Boeing Sparse Matrix Collection.
Report RAL 92-086, Rutherford Appleton Laboratory, Chilton, Didcot,Oxfordshire OX11 0QX.

3.1.1 Standard sparse matrix format

The standard sparse matrix format is column-oriented. That is, the matrix is represented by a sequence of columns.
Each column is held as a sparse vector, represented by a list of the row indices of the entries in an integer array and a
list of the corresponding values in a separate real array. A single integer array and a single real array are used to store
the row indices and the values, respectively, for all of the columns. (Throughout, we use the term “real” in a generic
sense so that it should be read as a Fortran real, double precision, complex, or double precision complex as
appropriate). Data for each column are stored in consecutive locations, the columns are stored in order, and there is no
space between the columns. A separate integer array holds the location of the first entry of each column and the first
free location. For symmetric and Hermitian matrices, we store only the entries of the lower triangle (including the
diagonal). For skew symmetric matrices, we hold only the strict lower triangle.

We illustrate the storage scheme with the following example. The 5 × 5matrix

1. −3. 0 −1. 0

0 0 −2. 0 3.

2. 0 0 0 0

0 4. 0 −4. 0

5. 0 −5. 0 6.

would be stored in the arrays COLPTR (location of first entry), ROWIND (row indices), and VALUES (numerical values)
according to the following prescription:

Subscripts 1 2 3 4 5 6 7 8 9 10 11

COLPTR 1 4 6 8 10 12

ROWIND 1 3 5 1 4 2 5 1 4 2 5
VALUES 1. 2. 5. –3. 4. –2. –5. –1. –4. 3. 6.

We can generate column 5, say, by observing that its first entry is in position COLPTR(5) = 10 of arrays ROWIND
and VALUES. This entry is in row ROWIND(10) = 2 and has value VALUES(10) = 3. Other entries in column 5 are
found by scanning ROWIND and VALUES to position COLPTR(6)–1, that is position 11. Thus, the only other entry in
column 5 is in row ROWIND(11) = 5 with value VALUES(11) = 6.

All use is subject to licence. MF36 v 1.0.0
http://www.hsl.rl.ac.uk/ 4 Documentation date: 8th February 2011

HSL ARCHIVE MF36

3.1.2 Finite-element matrices in unassembled format

Matrices arising in finite-element applications are usually assembled from numerous small elemental matrices. Our
collection includes a few sparse matrices in original unassembled form. The storage of the unassembled matrices is
analogous to the explicit form above, which stores each matrix as a list of matrix columns. The elemental
representation stores the matrix as a list of elemental matrices. Each elemental matrix is represented by a list of the
row/column indices (variables) associated with the element and by a small dense matrix giving the numerical values
by columns (in the symmetric case only the lower triangular part). The lists of indices are held contiguously, just as
for the lists of row indices in the standard format. The dense matrices are held contiguously in a separate array, with
each matrix held by columns. Although there is not a 1-1 correspondence between the arrays of integer and numerical
values, our representation does not hold the pointers to the beginning of the real values for each element. These

2pointers can be created from the index start pointers (ELTPTR) after noting that an element with v variables has v real
values (v × (v+1) / 2 in the symmetric case).

We illustrate the elemental storage scheme with a small example. Consider a 5 × 5 symmetric matrix

5. 0. 0. 1. 2.

0. 4. 3. 0. 6.

0. 3. 7. 8. 1. ,

1. 0. 8. 9. 0.

2. 6. 1. 0. 10.

generated from four elemental matrices,

2 4. 3. 6.
1 2. 1. 1 3. 2. 3 2. 8.

3 3. 5. 1. ,
4 1. 7. 5 2. 8. 4 8. 2.

5 6. 1. 2.

where the variable indices are indicated by the integers before each matrix (columns are identified symmetrically to
rows). This matrix would be stored in the arrays ELTPTR (location of first entry), VARIND (variable indices), and
VALUES (numerical values) according to the following prescription:

Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ELTPTR 1 3 5 8 10

VARIND 1 4 1 5 2 3 5 3 4
VALUES 2. 1. 7. 3. 2. 8. 4. 3. 6. 5. 1. 2. 2. 8. 2.

3.1.3 Right-hand sides

Where the matrices originate in the solution of linear equations and the right-hand sides are available, the

All use is subject to licence. MF36 v 1.0.0
http://www.hsl.rl.ac.uk/ 5 Documentation date: 8th February 2011

MF36 HSL ARCHIVE

right-hand-side vectors are stored with the matrices. Usually the right-hand-side vectors are dense, in which case they
are stored contiguously (as in ordinary Fortran array storage). Multiple right-hand sides are stored as consecutive
vectors, so that the right-hand sides are accessible as the columns of a Fortran array.

An alternative form is available in which right-hand sides are represented in the same format as the matrix. For
unassembled matrices the associated right-hand sides can be represented by elemental contributions. Right-hand sides
in elemental form are stored as a sequence of small dense matrices, each small matrix having as many columns as the
number of right-hand sides, and with as many rows as the corresponding element in the matrix representation. Within
each elemental right-hand side, the rows correspond to the entries in the variable index vector for that element.

The format for assembled sparse matrices is used to store sparse right-hand sides. Applications with sparse
right-hand sides are less common, but the sparsity can be used to advantage in direct solution techniques. We only
allow sparse right-hand sides for assembled matrices, in which case we store the right-hand sides exactly as a standard
sparse matrix, with the same number of rows as the coefficient matrix and the same number of columns as right-hand
sides.

We allow the specification of a starting guess for the solution of the problem and a vector that purports to be the
exact solution. These can only be supplied as full arrays and only when right-hand sides are present. Either or both of
these arrays can be present. The starting vectors precede the solution vectors if both are given and the number of such
vectors must be equal to the number of right-hand sides.

4 METHOD

The code reads sequentially the data from the unit ICNTL(1). It checks the sizes, and, if values are wanted but not
provided, it fills the pattern with random numbers using routine FA04A/AD of the Harwell Subroutine Library.

5 EXAMPLES OF USE

We illustrate the use of the subroutine by a small program that reads a matrix from a file and prints it out column by
column.

PROGRAM READ

C Maximum size for arrays
INTEGER NMAX,NZMAX,MAXRHS,NZRHS
PARAMETER (NMAX=100, NZMAX=4000, MAXRHS=0, NZRHS=1)

C MF36 parameters
INTEGER NROW, NCOL, NNZERO, ICNTL(10)
CHARACTER TITLE*80
INTEGER COLPTR(NMAX+1), ROWIND(NZMAX)
COMPLEX*16 VALUES(NZMAX), RHSVAL(NZRHS),
* GUESS(NMAX*MAXRHS+1), SOLN(NMAX*MAXRHS+1)
INTEGER RHSPTR(MAXRHS+1), RHSIND(NZRHS)
LOGICAL ELT
INTEGER NRHS,IW(NZMAX),INFO(10)

C Local variables
INTEGER I,J,J1,J2

C Read the matrix
ICNTL(1) = 5

All use is subject to licence. MF36 v 1.0.0
http://www.hsl.rl.ac.uk/ 6 Documentation date: 8th February 2011

HSL ARCHIVE MF36

ICNTL(2) = 6
ICNTL(3) = 2
ICNTL(4) = 1
CALL MF36AD(NMAX,NZMAX,TITLE,ELT,NROW,NCOL,NNZERO,
1 COLPTR,ROWIND,VALUES,MAXRHS,NRHS,NZRHS,
2 RHSPTR,RHSIND,RHSVAL,GUESS,SOLN,IW,ICNTL,INFO)

C The matrix is now output

DO 20 J=1,NCOL
WRITE(6,'(A,I3)') 'Row indices and values in column',J
J1 = COLPTR(J)
J2 = COLPTR(J+1)-1
WRITE(6,'(4(I2,2F6.2,2X))') (ROWIND(I),VALUES(I),I=J1,J2)

20 CONTINUE

END

If we run on Matrix JGL009 from the counterx.data set of the Harwell-Boeing Collection that is held as:

1U JOHN G. LEWIS P4 COUNTEREXAMPLE WHICH REQUIRES FILL IN SPIKES JGL009
3 1 2 0 0

PUA 9 9 50 0
(24I3) (36I2) (4E20.12)
1 9 13 21 27 33 39 44 46 51

1 2 4 5 6 7 8 9 2 3 8 9 2 3 4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7
8 9 1 2 3 8 9 8 9 1 2 3 8 9

It produces :

1U JOHN G. LEWIS P4 COUNTEREXAMPLE WHICH REQUIRES FILL IN SPIKES JGL009
Order of matrix is 9
Number of entries is 50
Row indices and values in column 1
1 -0.74 -1.00 2 -0.08 0.51 4 -0.56 0.07 5 0.36 -0.91
6 0.87 0.36 7 0.04 -0.23 8 -0.93 0.66 9 0.06 -0.89
Row indices and values in column 2
2 -0.98 0.34 3 -0.87 -0.23 8 0.37 -0.17 9 0.86 0.18
Row indices and values in column 3
2 0.05 0.69 3 0.31 -0.82 4 0.40 -0.17 5 0.52 0.82
6 -0.91 -0.48 7 -0.34 0.47 8 0.51 0.27 9 -0.27 0.98
Row indices and values in column 4
4 0.97 -0.51 5 0.51 0.45 6 -0.85 0.30 7 0.77 0.26
8 -0.13 -0.45 9 -0.04 0.53
Row indices and values in column 5
4 -0.45 -0.52 5 -0.67 -0.28 6 0.80 -0.03 7 -0.88 0.82
8 0.01 0.81 9 -0.36 0.03
Row indices and values in column 6
4 -0.01 0.97 5 -0.82 -0.47 6 -0.85 0.90 7 -0.23 0.00
8 0.83 -0.45 9 -0.07 0.06
Row indices and values in column 7
1 -0.90 0.88 2 0.54 0.52 3 -0.75 0.66 8 0.38 -0.97
9 0.26 0.74
Row indices and values in column 8
8 0.45 0.47 9 0.78 1.00

All use is subject to licence. MF36 v 1.0.0
http://www.hsl.rl.ac.uk/ 7 Documentation date: 8th February 2011

MF36 HSL ARCHIVE

Row indices and values in column 9
1 -0.39 -0.53 2 0.03 -0.30 3 0.69 0.18 8 0.68 -0.18
9 -0.17 -0.46

All use is subject to licence. MF36 v 1.0.0
http://www.hsl.rl.ac.uk/ 8 Documentation date: 8th February 2011

