
OE10
PACKAGE SPECIFICATION HSL ARCHIVE

1 SUMMARY

OE10A is an editor program for maintaining files of fixed-length records, such as programs in Fortran. It reads
an input file and edits it under the control of an edit file to produce one or more output files. The files are identified
to the subroutine by input-output unit numbers, which can be changed at any time by means of commands in the edit
file, thus enabling a data set to be split into parts or several data sets to be concatenated. The fixed-length record that
is handled by OE10A consists of a record body followed by a label field, which may be null but whose default length
is 8 characters.

OE10A provides for copying, deleting, inserting, labelling, and numbering records. This may be performed
selectively to include or exclude blocks of records identified by a select code, for example to enable either a Fortran
66 or a Fortran 77 version to be produced from the same input file.

OE10A can also maintain an internal buffer containing macros, which are groups of records (e.g. COMMON blocks)
that replace macro call records. Macros may be nested (that is, the macro text may contain references to other
macros) and may have parameters which are given numeric or text values in the macro call. Additional parameters
may be defined in a macro as functions of those already known.

OE10A can also operate on ‘files’ in memory. Unit number 0 refers to an array supplied as an argument. A unit
number greater than 99 specifies a ‘file’ whose records are accessed one by one through subroutines written by the
user.

ATTRIBUTES — Version: 1.0.0. Types: OE10A Calls: None. Original date: June 1988. Origin: A.R.Curtis,
Harwell. Remark: Makes OE03 obsolete.

2 HOW TO USE THE PACKAGE

2.1 Argument list

CALL OE10A (JED,JIN,JOUT,LEND,ISUB,LREC,NISUB,NSET)

JED is an INTEGER variable initialising the unit number for the edit file, from which OE10A will start to read
commands; JED is not changed by OE10A, even if a command causes a change of the edit file number.
Restriction: JED ≥ 0.

JIN is an INTEGER variable initialising the unit number for the input file; it is also not changed by OE10A.
Restriction: JIN ≥ 0.

JOUT is an INTEGER variable initialising the unit number for the output file; it is also not changed by OE10A.
Restriction: JOUT ≥ 0.

LEND is a LOGICAL variable which is set by OE10A to .TRUE. for a successful edit, or to .FALSE. if it detects any error
condition.

ISUB is a CHARACTER*1 array of dimensions (LREC,NISUB), which OE10A uses as an internal buffer addressed as
unit 0. It is used to hold the text of macros. The user may, if he or she wishes, load the first NSET columns of
this array with records before calling OE10A. It will be treated as a single file, open for reading at its start and
writing at its end. If he or she does not do this, and does not call for use of unit 0, then NISUB can be set to 1.

LREC is an INTEGER variable specifying the logical record length of all the files (including ISUB). It is not changed
by OE10A. Restriction: 20 ≤ LREC ≤ 125.

NISUB is an INTEGER variable specifying the second dimension of ISUB. It is not changed by OE10A. Restriction:
NISUB > max(0, NSET).

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 1 Documentation date: 8th February 2011

OE10 HSL ARCHIVE

NSET is an INTEGER variable specifying that the number of records held in ISUB is max(0, NSET); it must be set by
the user before entry, and is changed by OE10A to the final number of records in ISUB.

2.2 Commands

The edit file consists of a sequence of commands to be interpreted by OE10A, interspersed with records for insertion
in the output. Any record not recognised as a command is inserted in the output. Commands are identified by a colon
at the start of an edit file record, followed immediately by one of the command letters defined in Sections 2.2.1 to
2.2.10 and (except as specified below for :C, :D, and :U) at least one blank.

The general separator for parameters on a command record is a comma; this must always immediately follow the
preceding parameter (otherwise subsequent ones are assumed absent), but may be followed by one or more blanks if
desired. The whole command must lie within a single record body. Commas that are consecutive or have only blanks
intervening indicate missing parameters; these are allowed, for example, in the :A or :U command.

Numerical parameters, indicated by n1, n2, and so on, must be unsigned integers. For some purposes, a range of
character positions within a record must be supplied; this is indicated by posrange, and defines two numbers n1 and
n2, a starting and a finishing position. If present, it must have one of the following forms:

1. 0 defines n1 and n2 to have default values;

2. n1 defines n2 = n1;

3. n1−n2 defines n1 and n2 separately; n1 must be less than n2 and the – sign must immediately follow n1.

Text parameters, for example 'string', each consist of the desired character string preceded and followed by the
same character (e.g. a prime) that is not a comma or a number and does not occur in the string. A null string,
consisting simply of two consecutive occurrences of the same delimiting character, is acceptable in some situations.

2.2.1 The Alter command

:A 'slid', 'pidstr', 'mcid', posrange, 'cmid', 'leof'

allows new values to be set for various strings and character positions. Since most applications will use the default
settings throughout, we describe the facilities in terms of the defaults in Sections 2.2 to 2.5 and defer explaining the
alter command until Section 2.6.

2.2.2 Copy commands

:C

copies records from the input file until an end-of-file condition (the physical end of the file or the identifier .EOF
starting in column 1) is found in the input file.

:C n1

copies n1 records from the input.

:Cx 'string', posrange

copies until the next record which contains the specified string starting in a position within the range posrange. The
string must not be null. The default for posrange is the first position of the label field (the label field is the last 8
positions by default, and may be altered by the :L command). If the character, designated as x, immediately following
:C is not blank, there is a ‘copy up to but not including’ action: the record containing the string is not copied to the
output, but is saved in an internal one-record buffer for use on the next read from the same input file. Only one such
record can be held at a time.

Examples of copy commands are:

:C Copy to end of file.

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 2 Documentation date: 8th February 2011

HSL ARCHIVE OE10

:C 10 Copy 10 records.
:C ’SUM’, 1 Copy until SUM found starting in column 1.
:C ’SUM’,1-8 Copy until SUM found starting one of cols 1-8.
:C /SUM/, 0 Copy until SUM found in label field.
:CX ’SUM’ Copy until SUM found in label field,

excluding the card on which it is found.

2.2.3 Delete commands

:D
:D n1
:Dx 'string', posrange

read and ignore records from the input file. Otherwise, the interpretation is exactly as for :C. In particular, if x is not
blank, the record on which the string is found is saved for later copying or deletion.

2.2.4 The Exit command

:E

returns to the calling program, with the argument LEND set to indicate success. This is the only way to return
indicating success. All errors, including reaching the end of the edit file, cause an immediate return.

2.2.5 The Identify command

:I 'string', posrange, 'newstring'

reads the next record in the input file and checks whether it contains string (e.g. a version date) starting in the position
range posrange, whose default is the first position of the label field. If it fails the check, an immediate error return
occurs. Otherwise, string is replaced by newstring, whose default is string (i.e. no replacement), and the record is
output. If the replacement is too short, it is padded on the right with blanks; if it is too long, it is truncated.

An example of the identify command is:

:I ’27/4/88’,,’28/4/88’ Check the date in the label field and change it.

2.2.6 The Label command

:L 'string', n1

causes subsequent output records to be labelled with the specified string, left justified in the label field. The string
may be null. Its length must not exceed 12. If the optional parameter n1 (maximum: 12, minimum: length of string) is
present, it is used as a new value for the width of the label field (which always finishes at the end of the record). If n1
is absent, the width of the label field is not changed. Initially, the length is 8.

An example of the label command is:

:L ’OE10’ Change the label to OE10.

2.2.7 The Number command

:N n1, n2

causes subsequent output records to be serially numbered in the label field, the initial number being n1 and the
increment n2 (default n1, or 10 if n1=0). If n1 is absent, serial numbering is switched off. The numbers are right
adjusted in the field with leading zeros filling the field. Numbering is done before labelling if both are in operation, so
that the label over-writes the leading zeros of the number. Initially, numbering is switched off.

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 3 Documentation date: 8th February 2011

OE10 HSL ARCHIVE

Examples of the number command are:

:N Switch numbering off.
:N 10 Number from 10 in steps of 10.
:N 100, 10 Number from 100 in steps of 10.

2.2.8 The Remark command

:R text

has no effect whatsoever; it may be used to annotate the edit file, and will be listed with all other edit records read, if
listing has been specified – see :U command in Section 2.2.10.

2.2.9 The Select command

:S 'string', n1

specifies that blocks of output records that are identified by the select code string are output if they are also identified
with the select value n1 and are suppressed if they are identified with other select values. This provides a conditional
select facility, described in more detail in Section 2.5. The string specifying the select code must not be null or longer
than 4 characters, and must start with the select code identifier ?. If the value n1 is absent, a value is found from the
macro whose name is string (see Section 2.5.4). In either case, the value must not exceed 8000. Any existing select
command with the same code is simply over-written; a value n1 = 0 causes this deletion without storing the new
command.

:S 'string', 'C'
:S 'string', 'D'

specify that blocks of records identified by string are copied or deleted. This provides an absolute select facility, also
described in Section 2.5.

Examples of the select command are:

:S ’?D’, 1 Select records identified by ?D and 1.
:S ’?D’, ’C’ Select records identified by ?D.
:S ’?D’, ’D’ Delete records identified by ?D.

2.2.10 Units commands:

:U n1, n2,

sets new unit numbers for edit (n1), input (n2), listing of edit records read (n3), listing of output records (n4), and
output (n5 onwards). The value 0 for n3 or n4 indicates no listing. Initially, the number of units is set to 5 and both n3
and n4 are set to 0; OE10A initializes n1, n2, and n5 to JED, JIN, and JOUT, respectively. Subsequently, when a unit
command specifies 5 or more, this is the new number of units; if it specifies less than 5, the new number is 5. No more
than 14 units are permitted. The default for any omitted unit number is the former value. A trailing comma indicates
one default unit. If the same positive value is specified for edit and output listings, the resulting listing traces the full
course of the edit process. In both the edit and output listings, each record is preceded on the same line by a count of
the number of output records so far.

:UD

deletes the last logical file on unit 0.

:UE n1, n2,

writes a physical end-of-file mark on units n1,..., except in the case of unit 0. For unit 0, it causes all the macro header
records to be located and a system of pointers to them to be set up.

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 4 Documentation date: 8th February 2011

HSL ARCHIVE OE10

:UL n1, n2,

writes a logical end-of-file mark (.EOF starting in position 1) on units n1,...

:UR n1, n2,

rewinds units n1,..., except in the case of unit 0. For unit 0, it moves the buffer’s read pointer back to the start of the
file it is in, or back a whole file if it points to an end-of-file record.

Examples of the units command are:

:U ,,6,6 Change both listing units to 6.

:U 12,5 Change the edit file to 12 and the input file to 5.

2.3 Unit numbers and files

Unit numbers, by which files are identified to OE10A, are of three kinds:

2.3.1 The special unit number 0 refers to files held in the buffer supplied as argument ISUB. Except for the last, each
file must be terminated by a logical end-of-file (a record containing the identifier .EOF starting in position 1) normally
placed there by a :UL or :UE command. If :UE is used, the file is assumed to contain data for use by the macro facility
(see Section 2.4), and is structured for that purpose; this can be done for only one file in the buffer. If unit 0 is
specified as the first output file (fifth parameter) on the :U command, output records are sent to it exactly as read,
without macro, select, label or number action, to enable such output to be re-used as input (after writing an end-of-file
record by :UL or :UE). Writing is always done to the end of the file and a separate pointer is maintained for reading.

If the user sets data in ISUB and calls OE10A with NSET positive, the data is treated as a single file that does not
have an end-of-file record. It will be ready to be read from the first record or written after the last record.

An end-of-file record during reading from unit 0 has the same effect as a logical end-of-file on a Fortran unit
number (see Section 2.3.2) unless it is at the end of the last file in the buffer, when it counts as a physical end-of-file.
A :UR (rewind) command for unit 0 moves the buffer’s read pointer back to the start of the file it is in, or back a whole
file if it points to an end-of-file record. A :UD command deletes the last file in the buffer by moving its write pointer
back; if the read pointer is in this file, a subsequent read generates a physical end-of-file condition.

2.3.2 Fortran unit numbers 1-99 are operated on by Fortran READ or WRITE instructions. During reading, if an
end-of-file condition is detected as a result of obeying a :C or :D command with no arguments, it terminates the
command without error; in all other cases it causes an error return after a diagnostic. After a legal logical end-of-file
(.EOF starting in position 1), input can continue without error, on the assumption that the input file consists of
concatenated logical files. After a physical end-of-file (detected by the END= exit from a Fortran READ) any attempt to
continue input from the unit causes an error return.

A :UE command writes a file mark on a Fortran unit, by means of a Fortran ENDFILE instruction; a :UL command
writes a logical end-of-file record. A :UR command issues a Fortran REWIND instruction. For suitable physical storage
media, this can be used to permit re-input of a file (or a series of logical files) which have been output by OE10A; but
unlike files on unit 0 (if it is the first output unit), records on such files will have been operated on by the macro,
select, label, and number facilities during output.

2.3.3 Unit numbers in the range 100 to 999 refer to pseudo-files whose records are accessed one by one through two
user-written subroutines (OE10Q for input, OE10R for output) that are called whenever OE10A requires a record to be
read or written. The dummy versions of these subroutines supplied with OE10A merely cause an end-of-file condition,
but the user may replace them by subroutines to carry out any action he or she wishes – for example he or she can
easily carry out editing between character arrays in memory if desired. The calling sequences are:

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 5 Documentation date: 8th February 2011

OE10 HSL ARCHIVE

CALL OE10Q(NU,REC,LREC,IEND)
CALL OE10R(NU,REC,LREC,IEND)

NU is an INTEGER variable set before entry to the unit number on which input or output is required; it will be in the
range 100 to 999, and should not be changed by either subroutine.

REC is a CHARACTER*1 array of length LREC, which contains the record to be output by OE10R (which should not
change it), or into which OE10Q should put the input record.

LREC is an INTEGER specifying the record length; except that, in the case of OE10R, a special meaning attaches to
values 1 or 2 for LREC, which are illegal record lengths. A value of 1 means that a :UE command has called for
a physical file mark to be written on the unit, while a value of 2 means that a :UR command has called for it to
be rewound. If the user’s edit file produces such commands, his or her OE10R subroutine must carry out suitable
actions. The value of LREC should not be changed.

IEND is an INTEGER variable used by the subroutine to return a value to the calling program. A negative value should
be returned normally, but IEND should be set equal to NU+1000 by OE10Q to signify a physical end-of-file,
where further reading from the unit would be impossible; or to NU to signify a logical end-of-file; however, if
IEND is negative on return from OE10Q, the record is still checked for logical end-of-file. OE10R should set
IEND to NU, or to NU+1000, to indicate an error condition (e.g. an array in memory, used for output, having
insufficient room).

2.4 The macro facility

The macro facility allows a single macro call record sent to the output stream to be replaced before output by a
block of macro text records from array ISUB, with any macro parameters which occur replaced by values from the
macro call record. The macro call record carries the identifier .MCL in positions 1 to 4 and a 4-character macro name
mnam in fixed positions 5 to 8. Macro calls may be nested to a depth of 10.

The macro text in ISUB is preceded by a macro header record, identified by the code .MAC in positions 1 to 4, the
macro name mnam in positions 5 to 8, optionally followed immediately by a comma and then a list of parameter
names in the remainder of the record body; this list may be continued on further records if necessary. The macro text
is delimited by the next macro header record, or optionally by a special terminator record. The latter choice may
improve readability; and remarks records may be included in the macro text for the same purpose.

The macro call record contains actual values for the parameters, in the same order as on the macro header; this list
can also be continued on to further records if necessary. The parameter values may be numeric or text. The macro text
may contain calculated assignment statements, each of which defines a new parameter by means of an expression
involving existing ones; such statements may also be continued on to more than one record.

Any record in a macro starting with the combination &REM is treated as a remark, and is ignored when using the
macro. A record starting &END acts as a terminator for the macro.

2.4.1 An outline example

A macro called ABCD in array ISUB might have the form

.MACABCD, (list of parameter names)
(records containing text of macro,

:
referring to the parameters)

&END (optional)
.MAC (next macro header)

and a macro call record for this macro would have the form

.MCLABCD, (list of parameter values)

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 6 Documentation date: 8th February 2011

HSL ARCHIVE OE10

In either case, the comma must immediately follow the macro name if a parameter list is present, or be omitted if not.

2.4.2 Setting up a file of macros

A file on unit 0 (i.e. in array ISUB) can be designated for use by the macro facility by issuing a :UE command; or if
the appropriate material has been placed in ISUB before calling OE10A, and argument NSET has been set to its record
count, a :UE command for unit 0 will cause it to be organized for this purpose.

The first 4 characters of the first record of the file must be the macro header identifier .MAC. The identifier .MAC
must not occur at the start of a record that is not a macro header. Every record in the file starting with .MAC, and with
positions 5 to 8 not all blank, is a macro header, preceding a macro (which may be null). The file must be terminated
by a record with .MAC in positions 1 to 4 and blanks in positions 5 to 8.

The :UE command for unit 0 causes all these records with .MAC to be located, and a system of pointers to them set
up.

2.4.3 Macro calls

When a record is about to be output (other than on unit 0 if this is the first output unit specified), its first 4
characters are checked against .MCL. If they match, positions 5 to 8 are taken as a macro name and the corresponding
macro header record is located in the macro data. If the macro name is followed immediately by a comma, the header
record is scanned for parameter names, each one as it is found being entered in a dictionary, together with a value
(numeric or text) that is taken from the the corresponding position on the macro call record. The parameter values are
separated as usual by commas. If the last non-blank character on a call record is a comma, the list of parameter values
must continue on the next record.

2.4.4 Macro parameters

Parameter names on a macro header record (and perhaps on continuation records) are entered as three-character
groups; each is preceded by a comma, and optionally by a number of blanks; the first non-blank character after the
comma signals the start of the name. A parameter name (or the macro name, if there are no parameters) not followed
by a comma signals the end of the parameter list; a comma at the end of a record, or followed only by blanks,
indicates that a continuation header record follows. The special three-character combinations END and REM must be
avoided as parameter names.

Thus in the example of Section 2.4.1, if the macro ABCD had parameters named IJK, LMN, UVW, and XYZ, the full
form of its header record could be

.MACABCD, IJK, LMN, UVW, XYZ

with the absence of a comma after the last parameter fixing the number as 4. A macro call record could have the form

.MCLABCD, 37, 5, 629, /'ERROR MESSAGE NUMBER 23'/

which would set the first three parameters to numeric values and the fourth to the text value 'ERROR MESSAGE NUMBER
23'. Note that in this example the slashes are string delimiters.

2.4.5 Parameter references

Parameter references inside the macro take the form &..nam where &.. stands for a string of ampersands, and nam
is the three-character name of a previously-defined parameter. The number of ampersands preceding the name must
be sufficient to take up enough space for the longest actual value (where the length of a number is its number of
digits) , i.e. at least n−3 to accommodate actual parameters of length n characters. If too much space is allocated in
this way for a parameter with a numeric value, it is padded on the left with blanks. If too much space is allocated for
a parameter with a text value, subsequent characters in the record are moved to the left to reduce the space to that
needed.

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 7 Documentation date: 8th February 2011

OE10 HSL ARCHIVE

2.4.6 Numeric calculated assignments

The macro text may contain statements each defining a new parameter with a numeric value calculated as an
expression. A numeric calculated assignment statement has the form

&num = expression; (optional comment)

where expression involves unsigned integer constants and references to parameters having numeric values, connected
by the binary operators listed in Table 1. It may continue on further records if necessary, until the terminating
semicolon; but any comment must be confined to this last record of the statement. A single item (a number or
parameter reference) must not be split over more than one record, and continuation after the = sign is not permitted.

The parameter name num (preceded by an ampersand) must occupy the first positions of the record, but spaces are
allowed between items after that. All parameter references in the expression will have been replaced by their values
before the expression is evaluated; the fields in which they occur must therefore be made wide enough to avoid field
overflow by using sufficient ampersands.

Operator symbol Operation represented

+ add
− subtract
∗ multiply
/ integer divide

> or) take the greater of
< or (take the lesser of

Table 1. Operators allowed in numeric calculated assignment statements.

The expression is evaluated in calculator mode, from left to right without operator hierarchy; that is, each operator
takes the partially evaluated expression as its left operand, and the following value as its right operand, its result
replacing the partially evaluated expression. The terminating semicolon causes assignment of this value to num.

An attempt to assign to a parameter with a non-null text value or a nonzero numeric value is treated as an error.

As examples of expression evaluation, the expression

20 + 6 * 3) 50

evaluates to 78, through the intermediate values

20 + 6 = 26, 26 * 3 = 78, max(78,50) = 78.

However, the expression

6 * 3 + 20) 50

evaluates to 50, through the intermediate values

6 * 3 = 18, 18 + 20 = 38, max(38,50) = 50.

2.4.7 Text calculated assignments

The macro text may also contain statements each defining a new parameter with a text value that is obtained by
concatenation. Their form is:

&txt = 'string1' 'string2' ... ; (optional comment)

where string1, string2, etc are text strings or references to parameters, and txt is the name of a new parameter. The

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 8 Documentation date: 8th February 2011

HSL ARCHIVE OE10

rules for &txt and for continuation records are the same as for numeric calculated assignments. The new parameter is
given the value obtained by concatenation with no intervening blanks (but with blanks forming part of text strings
preserved). A reference to a parameter with a numeric value is replaced with the text string that represents its decimal
value.

Note that the assignment

&txt = '&num' ;

permits a parameter with a numeric value to be used as text so that when it is shorter than its reference, the remainder
of the record moved is to the left.

An attempt to assign to a parameter with a non-null text value or a non-zero numeric value is treated as an error.

2.4.8 A detailed example

The full text of the macro ABCD might take the form

.MACABCD, IJK, LMN, UVW, XYZ
&SIZ = &IJK * &LMN ;
&ID1 = ’&IJK’ ;
&ID2 = ’BY ’ ’&LMN’ ;
&FNO = ’&UVW’ ;

WRITE (6,&FNO) (ARR(I),I=1,&SIZ)
&&UVW FORMAT(’ ARRAY DIMENSIONS &ID1 &ID2’/

1 1X,&&XYZ/
2 (1X,5E14.5))

The macro call record

.MCLABCD, 37, 5, 629, /'ERROR MESSAGE NUMBER 23'/

would then be replaced by

WRITE (6,629) (ARR(I),I=1, 185)
629 FORMAT(’ ARRAY DIMENSIONS 37 BY 5’/

1 1X,’ERROR MESSAGE NUMBER 23’/
2 (1X,5E14.5))

Note that the parameter UVW has a numeric value and occupies the same space as its reference, being padded on the
left with blanks, but that the parameters with text values, including FNO, occupy only the space needed to
accommodate them. Errors are diagnosed if FNO is given a value with more than four digits or XYZ is given a value
with more than 49 characters.

2.5 The select facility

The select facility allows single records or blocks of records to be included or not in the output under the control of
select commands in the edit file. Nesting is allowed, but we delay describing the nested case until Section 2.5.3. A
record in the output stream is identified as a select record by commencing with the select string of an active select
command. For example,

?D DOUBLE PRECISION A,B,C

commences with the select string ?D. A select block is delimited by special records commencing with the select string
of an active select command and immediately followed by the command identifier :, with no intervening blank or
comma. For example,

?D:C

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 9 Documentation date: 8th February 2011

OE10 HSL ARCHIVE

DOUBLE PRECISION A,B,C
A = 0.0D0

?D:E

is a select block with select string ?D. The C indicates the start of a copy block and the E indicates the end of the block.

Select processing is performed on all records in the output stream, including those obtained from the macro facility.

2.5.1 Single select records

For a single select record that is not nested within a select block (see Section 2.5.3) and is under the control of an
absolute select command, the select string is replaced by blanks and the record is output for C or deleted for D. For
example, the absolute select command

:S ’?D’, ’C’

results in the inclusion of the above single select record.

If such a record is under the control of a conditional select command, for example,

:S ’?P’, 1

a numerical value is obtained from immediately ahead of the label field. There must be no blanks between it and the
label field and it must be preceded by at least one blank. This value is matched with that of the :S command. If they
agree, the select code and numerical value are blanked from the record and it is then output; if the values do not agree,
the record is omitted from the output. For example, under the control of the select command of this paragraph, the two
records

?P REAL A,B,C 1
?P DOUBLE PRECISION A,B,C 2

in the input would yield the single output record

REAL A,B,C

2.5.2 Block select records

A record that is a leading delimiter of a select block contains :C or :D immediately after the select code. A record
that is a trailing delimiter of a select block contains :E immediately after the select code. A delimiting record is never
output.

For a block that is not nested within another block and an absolute select command, the block is output if the
command and the block are both labelled C or both labelled D; it is not output if they differ.

For a conditional select command, the rest of a :C or :D block select record contains one or more numerical values,
separated by commas, and a match occurs only if one of them matches the value on the select command. A
non-nested :C block is included when the match occurs and a non-nested :D block is included if a match does not
occur.

For example, if the input file contains the records

?P:C 1
REAL FUNCTION SNRM2(N,SX,INCX)
REAL SX(1),S
S=0.0

?P:E
?P:C 2

DOUBLE PRECISION FUNCTION DNRM2(N,SX,INCX)
DOUBLE PRECISION SX(1),S
S=0.0D0

?P:E

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 10 Documentation date: 8th February 2011

HSL ARCHIVE OE10

and is processed under the control of the conditional select command

:S ’?P’, 1

the output is

REAL FUNCTION SNRM2(N,SX,INCX)
REAL SX(1),S
S=0.0

2.5.3 Nesting select blocks

Select blocks may be nested to a maximum depth of 10. If a block is not selected, then all select blocks and single
select records within it are not selected. The rules for selecting the outermost block are exactly the same as in the
non-nested case. The rules for an inner block or single record when all the blocks within which it lies have been
selected are also exactly the same as in the non-nested case.

An example of nested select blocks is given in Section 5.3.

2.5.4 Select macros

A select command such as

:S ’?DDD’

is a conditional select command whose numerical value is obtained from the macro file (which must in this case have
been defined) as follows: the select code on the :S command is located as a macro name in positions 5 to 8 of one of
the macro header records containing .MAC in positions 1 to 4; the required numerical value must be supplied on the
remainder of this record (no actual macro should follow).

An example of such a macro is

.MAC?DDD 1

2.6 Altering default identifiers and values

The alter command has the form

:A 'slid', 'pidstr', 'mcid', posrange, 'cmid', 'leof'

The parameters are:

slid is a string of zero, one, or two characters that specifies the select identifier (initially ?).

pidstr is a string of one, two, or three characters. The first character is used for the macro parameter identifier pid
(initially &). The two further optional characters must each be a blank or a digit. The first alters the minimum
number of occurrences of pid needed to identify a parameter name, or leaves it unchanged if blank; a zero value
is not allowed. The initial value is 1. The second (that is, the third character of the string) also has no effect if
blank; if zero, it permits references to any parameter of a currently active macro, and if nonzero it permits
references only to those of the macro itself. Initially, references are permitted only to the parameters of the
macro itself.

mcid is a string of one to four characters, specifying a new macro call identifier (initially .MCL); if it has less than
four characters, it is padded on the right with blanks to make its length exactly four.

posrange specifies the character position range for macro names (initially 5-8).

cmid is a string of one to four characters that specifies the command identifier (initially :).

leof is a string of one to four characters that specifies the logical end-of-file identifier (initially .EOF).

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 11 Documentation date: 8th February 2011

OE10 HSL ARCHIVE

If a parameter is missing, as indicated by consecutive commas, the corresponding item is left unchanged.

The macro header identifier, usually .MAC, actually has no default setting, but rather is automatically taken from the
first record of the macro file. For example, the macro data of Section 2.4.1 would have set it to .MAC.

2.7 Error messages and returns

An error return is preceded by a diagnostic message on unit 6. The last line of the message is

** OE10 ERROR RETURN FOR ABOVE REASON AT OUTPUT COUNT nnn

The bodies of the possible messages are listed below. Where (record) is appended, the record causing the error is
listed. Numerical values that occur in messages are indicated by nnn and text values by text. Most of the messages are
self-explanatory; a brief explanation is given of any that may not be.

1 ** ILLEGAL ENTRY PARAMETERS TO OE10 nnn nnn ...
(arguments JED, JIN, JOUT, LREC, NISUB, NSET are listed)

2 ** IDENTIFICATION CHECK FAILURE – RECORDS (edit record, input record)

3 ** UNEXPECTED END FILE ON EDIT STREAM nnn

4 ** MISSING OR ILLEGAL PARAMETER ON MACRO CALL RECORD (record)

5 ** ILLEGAL NULL STRING ON EDIT RECORD (record)

6 ** ERRONEOUS COLUMN NUMBERS ON EDIT RECORD (record)

7 ** ILLEGAL MACRO HEADER RECORD DETECTED AT POSITION nnn (record)

8 ** STRING TOO LONG ON EDIT RECORD (record)

9 ** MACRO NESTING TOO DEEP

10 ** UNEXPECTED END FILE ON INPUT STREAM nnn

11 ** SELECT CODE DOES NOT START WITH CORRECT ID:slid (record)

12 ** BLANK MHID FIELD ON FIRST MACRO HEADER RECORD (record)

13 ** TOO MANY SELECT COMMANDS, MAXIMUM nnn (record)
(default maximum 30)

14 ** TOO MANY MACRO HEADERS, nnn NEEDED, nnn AVAILABLE
(default maximum 100)

15 ** NON-BLANK NAME FIELD ON LAST MACRO DATA RECORD (record)

16 ** TOO MANY INTERNAL FILES, MAXIMUM ALLOWED IS nnn
(default maximum 10)

17 ** CODE ON SELECT COMMAND NOT FOUND (record)
(in macro headers, when no numerical value on command)

18 ** SELECT COMMAND (OR REFERENCE) HAS VALUE MISSING OR ILLEGAL nnn (record)

19 ** ILLEGAL SYNTAX ON UNIT COMMAND nnn nnn ... (record)
(values are sequence no. of unit, old no. of units, list of units)

20 ** ILLEGAL SYNTAX ON ALTER COMMAND AT POSITION nnn (record)

21 ** ILLEGAL SECOND MACRO FILE SPECIFIED
(a second physical end-of-file specified for unit 0)

22 ** END OF FILE ON OUTPUT UNIT nnn

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 12 Documentation date: 8th February 2011

HSL ARCHIVE OE10

23 ** CANNOT FIND MACRO NAME IN MACRO FILE (record)

24 ** ILLEGAL COMMAND ON BLOCK SELECT RECORD (record)

25 ** NO VALUE NUMBER ON SELECT RECORD (record)

26 ** ILLEGAL NESTING OF BLOCK SELECT RECORDS nnn nnn nnn (record)
(values are: sequence no. of active select command, pointer to and contents of top of stack; default maximum stack
depth is 30)

27 ** ILLEGAL OPERAND IN CALCULATED ASSIGNMENT (record)

28 ** MISSING OR ILLEGAL FIRST OPERAND IN ASSIGNMENT (record)

29 ** PARAMETER VALUE TOO LONG, VALUE SO FAR IS (text)
(default maximum 100 characters)

30 ** ILLEGAL OPERATOR IN CALCULATED ASSIGNMENT (record)

31 ** ILLEGAL TERMINATOR IN ASSIGNMENT (record)

32 ** NUMERICAL PARAMETER VALUE HAS BECOME OUT OF RANGE nnn

33 ** PARAMETER REFERENCE OVERFLOWS END OF RECORD (record)

34 ** PARAMETER REFERENCE TO UNDEFINED PARAMETER (record)

35 ** LENGTH OF REPLACEMENT PARAMETER nnn EXCEEDS FIELD WIDTH (record)

36 ** PARAMETER DICTIONARY OVERFLOW, SIZE IS nnn
(default 100)

37 ** NO VALUE FOR PARAMETER TO BE ENTERED IN DICTIONARY

38 ** PARAMETER VALUE ARRAY OVERFLOW, SIZE IS nnn
(default 1000)

39 ** ILLEGAL REDEFINITION OF PARAMETER (record)

40 ** ILLEGAL SYNTAX ON EDIT RECORD (record)

2.8 COMMON blocks

There are four named COMMON blocks which are used to pass information between the subroutines of the package.

COMMON /OE10V/ PVAL(1000), CODSE(4,30), TEXT(100)

holds CHARACTER*1 arrays.

COMMON /OE10W/ IVAL(100), IPTR(100), LNG(100)
1, MSTACK(3,10), IFILE(10), ISUPNT(100)
2, ILKSE(10), IVLSE(30), IUNIT(14)

holds INTEGER arrays.

COMMON /OE10Y/ BLANK, COMMA, PID, EQLS, MINUS, LEFID(4)
1, MCLID(4), CMDID(4), MHDID(4), SELID(2), DGT(11), OPRTR(10)
2, NAMES(3,100)

holds CHARACTER*1 variables and arrays.

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 13 Documentation date: 8th February 2011

OE10 HSL ARCHIVE

COMMON /OE10Z/ LIST, NNMAX, NPID, NMPVAL, LCMDID, LMHDID
1, LMCLID, LSELID, NSTACK, LLEFID, NFILIM, NSULIM, NSELIM
2, NOPRTR, NMTXT, NSEL, NLAB, ISSTK, IBSEL, IDSEL, KOUNT
3, N80, N69, N70, N71, N72, N73, NPVAL, IMSTK, NAM1, NAM2
4, IOP, NOPRND, NFILE, JFILE, NPOINT, NSUPNT, LLABL, JENDF
5, NOMACR, NOEXPR, ALLMAC, NOPARM, LNUM, NUNIT, IBUF

holds INTEGER and LOGICAL variables.

3 GENERAL INFORMATION

Use of common: See §2.8.

Other routines called directly: OE10B, OE10C, OE10D, OE10E, OE10F, OE10G, OE10H, OE10I, OE10J, OE10K,
OE10L, OE10M, OE10N, and OE10O are private subroutines. OE10P is a subroutine without arguments that
initializes variables in COMMON. OE10Q and OE10R are explained in §2.3.3.

Input/output: See the arguments JED, JIN, and JOUT and the units command (§2.2.10).

Restrictions: JED ≥ 0, JIN ≥ 0, JOUT ≥ 0, 20 ≤ LREC ≤ 125, NISUB > max(0, NSET).

4 METHOD

The edit file is the first to be read and throughout controls the actions. A record is provisionally chosen for output
if it is a record in the edit file that is not a command or is copied from the input file under the control of an :C or :I
command in the edit file. For principal output to unit 0, the record is copied unchanged. For other output, the record is
replaced by its expansion if it is a macro call and the resulting record or records are then subject to select action; the
selected records are labelled and numbered, then listed and output. During macro expansion, any reference to a
parameter is replaced by its value and any parameter assignment is executed after the parameters have been replaced
by values.

Any error condition causes a message to be printed and an immediate return to be executed.

5 EXAMPLES OF USE

5.1 Single select records

The following file is a master copy of code for both the single and double precision version of a function. Records
only needed for the single precision version are labelled ?S and records only needed for the double precision version
are labelled ?D.

?S REAL FUNCTION SNRM2(N,SX,INCX)
?D DOUBLE PRECISION FUNCTION DNRM2(N,SX,INCX)
?S REAL SX(1),S
?D DOUBLE PRECISION SX(1),S
?S S=0.0
?D S=0.0D0

IF(N.LE.0)GO TO 20
IX=1
DO 10 I=1,N

S=S+SX(IX)**2
IX=IX+INCX

10 CONTINUE
?S 20 SNRM2=SQRT(S)
?D 20 DNRM2=DSQRT(S)

RETURN
END

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 14 Documentation date: 8th February 2011

HSL ARCHIVE OE10

The program
CHARACTER ISUB(80,1)
LOGICAL LEND
JED=12
JIN=5
JOUT=6
LREC=80
NISUB=1
NSET=0
CALL OE10A(JED,JIN,JOUT,LEND,ISUB,LREC,NISUB,NSET)
STOP
END

will make the double precision version if given the edit data
:S '?S', 'D'
:S '?D', 'C'
:C
:E

which selects ?S records for deletion and ?D records for insertion. It produces the following output:
DOUBLE PRECISION FUNCTION DNRM2(N,SX,INCX)
DOUBLE PRECISION SX(1),S
S=0.0D0
IF(N.LE.0)GO TO 20
IX=1
DO 10 I=1,N

S=S+SX(IX)**2
IX=IX+INCX

10 CONTINUE
20 DNRM2=DSQRT(S)

RETURN
END

5.2 Macro
An alternative is to hold the function as a macro in the input file:

.MACNRM2, PRC, NME, ZRO, SRT
&&&&&&&&&&&&&PRC FUNCTION &&NME(N,SX,INCX)
&&&&&&&&&&&&&PRC SX(1),S
S=&&ZRO
IF(N.LE.0)GO TO 20
IX=1
DO 10 I=1,N

S=S+SX(IX)**2
IX=IX+INCX

10 CONTINUE
20 &&NME=&&SRT(S)

RETURN
END

.MAC

The program
CHARACTER ISUB(80,20)
LOGICAL LEND
JED=12
JIN=5
JOUT=0
LREC=80
NISUB=20
NSET=0
CALL OE10A(JED,JIN,JOUT,LEND,ISUB,LREC,NISUB,NSET)
STOP
END

run with the edit data

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 15 Documentation date: 8th February 2011

OE10 HSL ARCHIVE

:C '.MAC ', 1
:UE 0
:U ,,,,6
.MCLNRM2, 'DOUBLE PRECISION', 'DNRM2', '0.0D0', 'DSQRT'
:E

copies the macro into unit 0, formats it, switches the output to unit 6, and calls the macro with parameter values
suitable for the double precision version. The output is exactly as in Section 5.1.

5.3 Block select

Another possibility is to group the statements needed for each precision into select blocks, labelled with 1 for single
and 2 for double precision. If there is a possibility of not needing the function at all, perhaps because on some systems
there is an assembly version automatically available, we might enclose the whole text in another select block. This
gives the file:

?F:C
?P:C 1

REAL FUNCTION SNRM2(N,SX,INCX)
REAL SX(1),S
S=0.0

?P:E
?P:C 2

DOUBLE PRECISION FUNCTION DNRM2(N,SX,INCX)
DOUBLE PRECISION SX(1),S
S=0.0D0

?P:E
IF(N.LE.0)GO TO 20
IX=1
DO 10 I=1,N

S=S+SX(IX)**2
IX=IX+INCX

10 CONTINUE
?P:C 1

20 SNRM2=SQRT(S)
?P:E
?P:C 2

20 DNRM2=DSQRT(S)
?P:E

RETURN
END

?F:E

Running with the program of Section 5.1 and the edit data:

:S '?F', 'C'
:S '?P', 2
:C
:E

yields the same output as in Section 5.1. If ’C’ on the first record is changed to ’D’, no output at all is obtained.

All use is subject to licence. OE10 v 1.0.0
http://www.hsl.rl.ac.uk/ 16 Documentation date: 8th February 2011

