1 SUMMARY

To find all the roots of a cubic polynomial, i.e. calculate the zeros of

$$
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}=0
$$

a non-iterative method is used.
ATTRIBUTES - Version: 1.0.0. Types: PA03A; PA03AD. Calls: FD05. Original date: September 1975 Origin: S.Marlow, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL PA03A (A, R, N)
The double precision version
CALL PA03AD (A, R,N)
A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the four coefficients of the polynomial, i.e. set $\mathrm{A}(\mathrm{j}+1)=a_{j}, j=0,1,2,3$.
R is a REAL (DOUBLE PRECISION in the D version) array which will be returned containing the roots found by the subroutine. In the case $(N=3)$ when there are three real roots they are returned in the order $R(1) \leq R(2) \leq R(3)$. In the other case $(N=1)$ when there is one real root and two complex roots, the real root is returned in $R(1)$, the real part of both complex roots is returned in $R(2)$ and the imaginary part is returned in $R(3)$. Note that in this case $R(3)$ is always positive.
$\mathrm{N} \quad$ is an INTEGER variable which is set by the subroutine to the number of real roots.

3 GENERAL INFORMATION

Workspace: None.
Use of common: None.
Other routines called directly: calls FD 05 .
Input/output: None.
Restrictions: None.

4 METHOD

A non-iterative method is used.

