1 SUMMARY

To compute the complex value of the real polynomial

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}
$$

for complex argument z.
The method is synthetic division by a quadratic factor, see, R. Butler and E. Kerr, 'Introduction to Numerical Methods', Pitman.
$P(z)$ and z must be Fortran COMPLEX variables but the calculation is carried out in real arithmetic with accumulation of intermediate results double length.

ATTRIBUTES - Version: 1.0.0. Types: PB02A; PB02AD. Calls: FD05A. Language: PB02AD uses COMPLEX*16 facility. Original date: July 1967. Origin: M.J.Hopper, Harwell. Remark: PB02A was formerly called PB02AS.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version

```
COMPLEX PB02A,P,Z
    - -
P=PB02A(A,N,Z)
```

The double precision version

```
COMPLEX*16 PB02AD,P,Z
DOUBLE PRECISION A
    - -
P=PB02AD (A,N,Z)
```

A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the coefficients of the polynomial, i.e. set $\mathrm{A}(i+1)=a_{i}, i=0,1,2, \ldots, n$.
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the degree of the polynomial.
Z is a COMPLEX (COMPLEX*16 in the D version) variable which must be set by the user to the complex value of the point at which the polynomial is to be evaluated.

P is a COMPLEX (COMPLEX*16 in the D version) variable set to the complex value of the polynomial evaluated at z. Note that the subroutine is a Fortran function subroutine and its type and precision must be declared in a Fortran type statement if the full precision is to be obtained.

3 GENERAL INFORMATION

Use of common: None.
Workspace: None.
Other routines called directly: None.
Portability: PB02AD uses COMPLEX*16 facility.
Input/output: None.

4 METHOD

Synthetic division by a quadratic factor is used. Letting $z=x+i y, \alpha=-2 x$ and $\beta=x^{2}+y^{2}$, and then defining r and s by

$$
P(z)=\left(z^{2}+\alpha z+\beta\right) Q(z)+r z+s
$$

where $Q(z)$ is the quotient polynomial on dividing $P(z)$ by the quadratic factor $z^{2}+\alpha z+\beta$, then by the remainder theorem, the value at z is $P(z)=r x+s+i r y$.

See R. Butler and E. Kerr, 'Introduction to Numerical Methods', Pitman.

