1 SUMMARY

To calculate the coefficients of a polynomial given all its roots, the roots must be real, i.e. given real numbers $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ calculate $a_{0}, a_{1}, \ldots, a_{n}$ with $a_{n}=1$ such that

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \equiv\left(x-\xi_{1}\right)\left(x-\xi_{2}\right) \ldots\left(x-\xi_{n}\right)
$$

ATTRIBUTES - Version: 1.0.0. Types: PC01A; PC01AD. Original date: August 1967. Origin: W.E.Hart, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version CALL PC01A (ROOT,COE,N)
The double precision version
CALL PC01AD (ROOT, COE,N)
ROOT is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the roots $\xi_{i}, i=1,2, \ldots, n$.
COE is a REAL (DOUBLE PRECISION in the D version) array of length at least $n+1$ in which the subroutine will return the coefficients $a_{i}, i=0,1,2, \ldots, n$ in the elements $\operatorname{COE}(J), J=1,2, \ldots, N+1$. Note that $\operatorname{COE}(N+1)$ is always set to one.
N is an INTEGER which must be set by the user to n the number of roots (also the degree of the polynomial).

3 GENERAL INFORMATION

Workspace: None.
Use of common: None.
Other routines called directly: None.
Input/output: None.
Restrictions: None.

