1 SUMMARY

Given $n+1$ points $x_{i}, y_{i} i=0,1,2, \ldots, n$ calculates the coefficients of the polynomial that passes through all $n+1$ points, i.e. the interpolation polynomial

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

such that

$$
P\left(x_{i}\right)=y_{i} \quad i=0,1,2, \ldots, n .
$$

The coefficients of the Lebesgue polynomials $L_{k}(x)$, i.e. such that $L_{k}\left(x_{i}\right)=0, i \neq k$ and $L_{k}\left(x_{k}\right)=1$, are calculated using PC01 and PB01, the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ are then obtained from

$$
P(x) \equiv \sum_{k=0}^{n} y_{k} L_{k}(x)
$$

ATTRIBUTES - Version: 1.0.0. Types: PC02A; PC02AD. Calls: PB01 and PC01. Original date: May 1964. Origin: L.Morgan, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL PC02A (X,Y,COE,W1,W2,N)
The double precision version

```
CALL PC02AD (X,Y,COE,W1,W2,N)
```

X is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the x coordinates of the points, i.e. set $\mathrm{X}(\mathrm{I}), \mathrm{I}=1,2, \ldots, \mathrm{~N}+1$ to the values $x_{i}, i=0,1,2, \ldots, n$.
Y is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the y coordinates of the points, i.e. set $\mathrm{Y}(\mathrm{I}), \mathrm{I}=1,2, \ldots, \mathrm{~N}+1$ to the values $y_{i}, i=0,1,2, \ldots, n$.

COE is a REAL (DOUBLE PRECISION in the D version) array of length at least $n+1$ which wil be set by the subroutine to contain the coefficients of the polynomial, i.e. $a_{i}, i=0,1,2, \ldots, n$ will be returned in $\operatorname{COE}(\mathrm{I}), \mathrm{I}=1,2, \ldots, \mathrm{~N}+1$.
W1 is a REAL (DOUBLE PRECISION in the D version) array of length at least $n+2$ which is used by the subroutine as workspace.
W2 is a REAL (DOUBLE PRECISION in the D version) array of length at least $n+1$ which is used by the subroutine as workspace.
N is an INTEGER which must be set by the user to n the degree of the polynomial.

3 GENERAL INFORMATION

Workspace: Provided by the user in the argument arrays W1 and W2.
Use of common: None.
Other routines called directly: PB01 and PC01.
Input/output: None.
Restrictions: None.

4 METHOD

The coefficients of the Lebesgue polynomials $L_{k}(x)$, i.e. such that $L_{k}\left(x_{i}\right)=0, i \neq k$ and $L_{k}\left(x_{k}\right)=1$, are calculated using PC01 and PB01, the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ are then obtained from

$$
P(x) \equiv \sum_{k=0}^{n} y_{k} L_{k}(x)
$$

