1 SUMMARY

To find the first m terms of the Taylor series expansion of $B(x)=1 / A(x)$, i.e. such that $A(x) B(x) \equiv 1$. Let

$$
A(x)=a_{1}+a_{2} x+a_{3} x^{2}+\ldots+a_{n+1} x^{n}
$$

where the first k coefficients $a_{i}, i=1,2, \ldots, k$ can be zero with $a_{k+1} \neq 0$, then the Taylor series expansion

$$
B(x)=x^{-k}\left(b_{1}+b_{2} x+b_{3} x^{2}+\ldots+b_{m} x^{m-1}+\ldots\right)
$$

is obtained by considering identities between $A(x)$ and $B(x)$.
ATTRIBUTES - Version: 1.0.0. Types: PD02A; PD02AD. Original date: December 1970. Origin: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL PDO2A (A, N, B, M, K)
The double precision version

```
CALL PD02AD (A,N,B,M,K)
```

A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial $A(x)$, so that $A(j)=a_{j}, j=1,2, \ldots, n+1$. If the first k elements $A(J), J=1, K$ are zero the subroutine will detect this and return the value of k (see argument K).
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the degree of the polynomial $A(x)$.
B is a REAL (DOUBLE PRECISION in the D version) array of length at least m in which the subroutine will return the first m terms of the expansion $B(x)$, i.e., $\mathrm{B}(\mathrm{j})=b_{j}, j=1,2, \ldots, m$.

M is an INTEGER variable which must be set by the user to m the number of terms required from the expansion $B(x)$.

K is an INTEGER variable which is set by the subroutine to k the number of leading coefficients of $A(x)$ found to be zero.

3 GENERAL INFORMATION

Workspace: none.
Use of common: none.
Input/output: none.
Restrictions: $\quad n \geq 0, m \geq 0$.

4 METHOD

Assume $A(x) B(x)=1$, then equating coefficients of like powers of x the recurrence relation

$$
\begin{aligned}
& b_{1}=1 / a_{1} \\
& b_{i}=\frac{-1}{a_{1}}\left[a_{2} b_{i-1}+\ldots+a_{i-1} b_{2}+a_{i} b_{1}\right],
\end{aligned}
$$

for $i=1,2, \ldots, m$ is obtained.

