

PACKAGE SPECIFICATION

PD03

HSL ARCHIVE

1 SUMMARY

Given a polynomial in *x*, i.e.

 $P(x) = a_0 + a_1 x + \dots + a_n x^n$ $n \le 50$

calculates the **coefficients** b_i , j=0, 1,..., n of the **polynomial under a change of variable** z=ux+v, i.e. such that

 $a_0 + a_1x + \dots + a_nx^n \equiv b_0 + b_1(ux+v) + \dots + b_n(ux+v)^n$

ATTRIBUTES — Version: 1.0.0. Types: PD03A; PD03AD. Calls: PB01. Original date: June 1966. Origin: A.R.Curtis, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list

The single precision version

CALL PD03A(A,B,U,V,N)

The double precision version

CALL PD03AD(A,B,U,V,N)

- A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the coefficients of the polynomial P(x), i.e. set $A(i+1) = a_i$, i=0, 1, 2,..., n. This argument is not altered.
- B is a REAL (DOUBLE PRECISION in the D version) array of length at least n+1 in which the routine returns the coefficients of the calculated polynomial, i.e. it sets $B(i+1) = b_i$, i=0, 1, 2, ..., n.
- U is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of u in the change of variable z=ux+v. This argument is not altered.
- V is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of v in the change of variable z=ux+v. This argument is not altered.
- N is an INTEGER variable which must be set by the user to *n* the degree of the polynomial. This argument is not altered. **Restriction:** $n \le 50$.

3 GENERAL INFORMATION

Workspace: None.

Use of common: None.

Other routines called directly: PB01A/AD.

Input/output: None.

Restrictions: $n \le 50$. This restriction can be relaxed by recompiling with a larger dimensioned internal work array.

4 METHOD

If v=0, the coefficients are merely multiplied by the appropriate powers of u^{-1} . Otherwise the coefficients of the successive derivative polynomials

$$p^{(k)}(x) = \frac{1}{k!} \frac{d^k}{dx^k} p(x)$$
 k=0, 1, 2,..., n

are built up in a private array called C and for each k, PB01A/AD is used to evaluate

$$b_k = u^{-1} p^{(k)} \left(\frac{-v}{u} \right).$$