1 SUMMARY

Given a polynomial in x, i.e.

$$
P(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \quad n \leq 50
$$

calculates the coefficients $b_{j}, j=0,1, \ldots, n$ of the polynomial under a change of variable $z=u x+v$, i.e. such that

$$
a_{0}+a_{1} x+\ldots+a_{n} x^{n} \equiv b_{0}+b_{1}(u x+v)+\ldots+b_{n}(u x+v)^{n}
$$

ATTRIBUTES - Version: 1.0.0. Types: PD03A; PD03AD. Calls: PB01. Original date: June 1966. Origin: A.R.Curtis, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list

The single precision version
CALL PD03A (A, B, U, V,N)
The double precision version

```
CALL PD03AD (A,B,U,V,N)
```

A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the coefficients of the polynomial $P(x)$, i.e. set $\mathrm{A}(i+1)=a_{i}, i=0,1,2, \ldots, n$. This argument is not altered.

B is a REAL (DOUBLE PRECISION in the D version) array of length at least $n+1$ in which the routine returns the coefficients of the calculated polynomial, i.e. it sets $\mathrm{B}(i+1)=b_{i}, i=0,1,2, \ldots, n$.
$\mathrm{U} \quad$ is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of u in the change of variable $z=u x+v$. This argument is not altered.

V is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of v in the change of variable $z=u x+v$. This argument is not altered.
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the degree of the polynomial. This argument is not altered. Restriction: $n \leq 50$.

3 GENERAL INFORMATION

Workspace: None.
Use of common: None.
Other routines called directly: $\mathrm{PB} 01 \mathrm{~A} / \mathrm{AD}$.
Input/output: None.
Restrictions: $n \leq 50$. This restriction can be relaxed by recompiling with a larger dimensioned internal work array.

4 METHOD

If $v=0$, the coefficients are merely multiplied by the appropriate powers of u^{-1}. Otherwise the coefficients of the successive derivative polynomials

$$
p^{(k)}(x)=\frac{1}{k!} \frac{d^{k}}{d x^{k}} p(x) \quad k=0,1,2, \ldots, n
$$

are built up in a private array called C and for each $k, \mathrm{~PB} 01 \mathrm{~A} / \mathrm{AD}$ is used to evaluate

$$
b_{k}=u^{-1} p^{(k)}\left(\frac{-v}{u}\right)
$$

