1 SUMMARY

This subroutine divides a polynomial by a linear factor to obtain the coefficients of the reduced polynomial, i.e. given a polynomial of degree n

$$
P(x)=a_{1}+a_{2} x+\ldots+a_{n+1} x^{n}
$$

with real coefficients and given a real linear factor $(x-\xi)$, it calculates $b_{i} i=1,2, \ldots, n$ such that

$$
P(x) \equiv(x-\xi)\left(b_{1}+b_{2} x+\ldots+b_{n} x^{n-1}\right)+r
$$

The remainder r is assumed to be zero, i.e. ξ is assumed to be a close approximation to a root of $P(x)$. The method avoids magnifying inaccuracies in ξ during the calculation. Note that $b_{n}=a_{n+1}$.

ATTRIBUTES - Version: 1.0.0. Types: PD04A, PD04AD. Original date: May 1980. Origin: C.Birch*, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version
CALL PD04A (A, B, ROOT, N,NP1)
The double precision version
CALL PDO4AD (A, B, ROOT, N,NP1)
A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the coefficients $a_{i} i=1,2, \ldots, n+1$ of the original polynomial $P(x)$. The array length must be at least $n+1$ (see argument NP1).
B is a REAL (DOUBLE PRECISION in the D version) array which is set by the subroutine to contain $b_{i} i=1,2, \ldots, n$ the coefficients of the reduced polynomial. The length of the array must be at least n.

ROOT is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of the estimate of the root ξ.
N is an INTEGER variable which must be set by the user to n the degree of the polynomial $P(x)$.
NP1 is an INTEGER variable which must be set by the user to the value $n+1$. It is used in the subroutine to dimension the array A .

3 GENERAL INFORMATION

Use of common: none.
Workspace: none.
Other routines called directly: none.
Input/output: none.

Restrictions:

```
n>0,
NP1 = n+1.
```


4 METHOD

The subroutine first finds k such that $\left|a_{k} \xi^{k-1}\right|$ takes its maximum value. Then it performs the deflation
$b_{n}=a_{n+1}$,
$b_{i}=\xi b_{i+1}+a_{i+1} \quad i=n-1, n-2, \ldots, k$
and
$b_{1}=-a_{1} / \xi$,
$b_{i}=\left(b_{i-1}-a_{i}\right) / \xi \quad i=2,3, \ldots, k-1$.

It has been shown by G.Peters and J.H.Wilkinson, J. Inst. Maths. Applics. 8 (1971), pp 21, that this method will always produce a reduced polynomial $B(x)$ such that $(x-\xi) B(x)$ differs little from the original polynomial $P(x)$. The code has been carefully designed to avoid any risk of overflow during the search for k.

