1 SUMMARY

To find the first m terms of the Taylor series expansion of $B(x)=\log _{e}\{A(x)\}$ such that $B^{\prime}(x) A(x) \equiv A^{\prime}(x)$ and $B(0)=\log _{e}\left(a_{1}\right)$. Let

$$
A(x)=a_{1}+a_{2} x+a_{3} x^{2}+\ldots+a_{n+1} x^{n}
$$

with $a_{1}>0$, then the Taylor series expansion

$$
B(x)=b_{1}+b_{2} x+b_{3} x^{2}+\ldots+b_{m} x^{m-1}+\ldots
$$

is obtained by considering identities between $A(x)$ and $B(x)$.
ATTRIBUTES - Version: 1.0.0. Remark: Formerly PD02B. Types: PD05A; PD05AD. Original date: December 1970. Origin: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL PD05A (A, N, B, M)
The double precision version
CALL PD05AD (A, N, B, M)
A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial $A(x)$, so that $\mathrm{A}(\mathrm{j})=a_{j}, j=1,2, \ldots, n+1$. Restriction: $a_{1}>0$.
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the degree of the polynomial $A(x)$.
B is a REAL (DOUBLE PRECISION in the D version) array of length at least m in which the routine will return the first m terms of the expansion $B(x)$, i.e., $\mathrm{B}(\mathrm{j})=b_{j}, j=1,2, \ldots, m$.

M is an INTEGER variable which must be set by the user to m the number of terms required from the expansion $B(x)$.

3 GENERAL INFORMATION

Workspace: none.
Use of common: none.
Other routines called directly: none.
Input/output: none.
Restrictions: $\quad n \geq 0, m \geq 0, a_{1}>0$.

4 METHOD

Assume $B(x)=\log _{e}\{A(x)\}$, differentiating gives $B^{\prime}(x) A(x)=A^{\prime}(x)$, then equating coefficients of like powers of x and using $B(0)=\log _{e}\{A(0)\}$ obtains the recurrence relation

$$
\begin{aligned}
& b_{1}=\log _{e}\left(a_{1}\right), \\
& b_{i}=\frac{1}{(i-1) a_{1}}\left[(i-1) a_{i}-(i-2) a_{2} b_{i-1}-\ldots-2 a_{i-2} b_{3}-a_{i-1} b_{2}\right],
\end{aligned}
$$

for $i=2,3, \ldots, m$.

