1 SUMMARY

To find the first m terms of the Taylor series expansion of $B(x)=\exp \{A(x)\}$ such that $B^{\prime}(x) \equiv A^{\prime}(x) B(x)$ and $B(0)=\exp \left(a_{1}\right)$. Let

$$
A(x)=a_{1}+a_{2} x+a_{3} x^{2}+\ldots+a_{n+1} x^{n}
$$

then the Taylor series expansion

$$
B(x)=b_{1}+b_{2} x+b_{3} x^{2}+\ldots+b_{m} x^{m-1}+\ldots
$$

is obtained by considering identities between $A(x)$ and $B(x)$.
ATTRIBUTES - Version: 1.0.0. Remark: Formerly PD02C Types: PD06A; PD06AD. Original date: December 1970. Origin: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL PD06A (A, N, B, M)
The double precision version

```
CALL PD06AD (A, N, B, M)
```

A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial $A(x)$, so that $\mathrm{A}(\mathrm{j})=a_{j}, j=1,2, \ldots, n+1$. Note that the elements of A are temporarily modified by the subroutine to $(J-1) * A(J), J=2,3, \ldots, N+1$ but are restored to their original values before returning to the caller.
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the degree of the polynomial $A(x)$.
B is a REAL (DOUBLE PRECISION in the D version) array of length at least m in which the subroutine will return the first m terms of the expansion $B(x)$, i.e., $\mathrm{B}(j)=b_{i}, j=1,2, \ldots, m$.

M is an INTEGER variable which must be set by the user to m the number of terms required from the expansion $B(x)$.

3 GENERAL INFORMATION

Workspace: none.
Use of common: none.
Other routines called directly: none.
Input/output: none.
Restrictions: $\quad n \geq 0, m \geq 0$.

4 METHOD

Assume $B(x)=\exp \{A(x)\}$, then at $x=0, b_{1}=\exp \left(a_{1}\right)$. Now differentiate $B(x)=\exp \{A(x)\}$ to obtain $B^{\prime}(x)=A^{\prime}(x) B(x)$, and then equate coefficients of like powers of x to obtain the recurrence relation

$$
\begin{aligned}
& b_{1}=\exp \left(a_{1}\right) \\
& b_{i}=\frac{1}{(i-1)}\left[a_{2} b_{l-1}+2 a_{3} b_{i-2}+\ldots+(i-1) a_{i} b_{1}\right],
\end{aligned}
$$

for $i=2,3, \ldots, m$.

